Где я? ZANOZA.LVдаугавпилсская жизнь → gordon

Сначала нужно залогиниться или зарегистрироваться.

gordon: Сакральная физика

12.11.2003 12:38, 181 месяц назад
<h4>Участники:</h4><ul><li>Юрий Иванович Кулаков– кандидат физико-математических наук</li></ul><p><strong>Александр Гордон: Как по прошествии сорока с лишним лет, в течение которых вы развиваете вашу теорию, относится к тому, чем вы занимаетесь, официальная академическая наука?Юрий Кулаков: Так как речь идёт о создании математизированной физической герменевтики – новой области знания, предметом изучения которой являются первоначала всего сущего, и, прежде всего, первоначала физики, математики, химии и биологии, – области знания, лежащей за пределами академической науки, то естественно, что отношение к такому роду деятельности со стороны официальной науки должно с неизбежностью быть как к чему-то подозрительному и одиозному, чужеродному и в высшей степени тенденциозному. </p><p>В самом деле, очень трудно отказаться от привычных представлений и допустить совершенно еретическую мысль, что в основании Мира лежат не пространство-время, не элементарные частицы и четыре вида их взаимодействий, а некоторые абстрактные "программы" – какие-то "физические структуры", предшествующие Большому взрыву и допускающие строгую математическую формулировку.</p><p>Как-то летом 1967 года обратился ко мне студент – выпускник физфака Геннадий Михайличенко с просьбой взять его к себе в аспирантуру. "Знаете, Гена, – сказал я ему, – проблема, над которой я работаю, абсолютно не диссертабельна. Никто в мире не занимается подобными вещами. Уверяю Вас, никакой диссертации по этой тематике Вы не защитите". Позже он признался мне: "Я был молод, полон сил, и я был уверен, что успею ещё написать и кандидатскую, и докторскую диссертации. Но мне хотелось узнать, чем же занимается Кулаков, о чём он с таким энтузиазмом говорит на своих лекциях. Что-то необычное, заумное, непонятное". </p><p>А мой учитель Игорь Евгеньевич Тамм уже тогда понимал, что настало время, когда нужно взглянуть на науку "с высоты птичьего полёта" и увидеть те внутренние пружины, те законы, которые управляют этим миром. Настало время возродить платоновскую идею, согласно которой за этим материальным миром скрывается некий мир иной реальности. </p><p>Как-то, во время поездки в Дубну, Игорь Евгеньевич сказал мне: "Если Вы хотите стать настоящим физиком, а не высококвалифицированным ремесленником, Вы не должны исключать возможности существования иных форм реальности, отличных от формы существования материальной действительности". </p><p>В те уже далёкие времена, в годы господства диалектического и исторического материализма эти слова казались мне еретическими, вызывали сладостное ощущение запретного плода и открывали передо мной новые горизонты. Но только теперь, спустя много лет, я по-настоящему понял их глубоко провиденциальный смысл.</p><p>В определённом смысле современная физика находится в состоянии, подобном тому, в каком она находилась в конце XIX века. Тогда тоже казалось, что физика в основном построена и только на горизонте, на фоне ясного неба, маячили два непонятных облачка – необычное поведение света в опытах Майкельсона и странное распределение энергии в спектре чёрного тела.</p><p>И никто не подозревал тогда, что начало XX века явится точкой бифуркации, в результате чего почти мгновенно сменятся приоритеты, и именно из этих двух облачков "под гром среди ясного неба" как раз и родится вся современная физика, и XX век станет жестоким атомным веком.</p><p>Нечто подобное происходит в физике и сейчас, в начале XXI века. После открытия кварков, казалось бы, всё стало на свои места. Осталось уладить вопрос с Великим объединением и подчистить кое-какие детали, чтобы сказать, что физика в основном построена. Однако похоже на то, что задача нахождения последних элементов материи наталкивается на дурную бесконечность. Ясно, что с увеличением энергии сталкивающихся частиц будут рождаться всё новые и новые "элементарные" частицы с всё большими и большими массами, претендующие на роль "последних кирпичиков Мироздания". И похоже, что этому процессу нет конца.</p><p>Казалось бы, современная наука, может ответить почти на любой вопрос; во всяком случае, так считает академическая наука. Она считает, что есть только некоторые трудности в физике элементарных частиц. Ну, например, проблема Великого объединения в микромире. И это очень важно. А всё остальное – дело техники. </p><p>Но оказывается, что современная наука не может ответить на главные вопросы, которые волнуют человечество. Она их просто не замечает, либо переадресует их философам. Какие же это вопросы? </p><p>Первый вопрос – почему мир устроен так, а не иначе? Например, почему атомы так малы, а вселенная так велика? </p><p>Второй вопрос – откуда берётся всё разнообразие физических законов?</p><p>Третий вопрос – почему мир развивается от простого к сложному? Почему, возникнув из элементарных частиц, он усложняется и усложняется, возникает жизнь, и, наконец, возникает человек? </p><p>Четвёртый вопрос – что такое жизнь? как возникла жизнь?</p><p>Пятый вопрос – что такое человек? как возник человек? как возник человеческий язык?</p><p>Может быть, ответив на первые два вопроса, мы найдём дорогу к решению всех остальных? </p><p>Игорь Евгеньевич в последний месяц своей жизни, умирая, лежа прикованный к дыхательному аппарату в своем кабинете, сказал мне: "Знаете, Юрий Иванович, в чём наша беда? Беда в том, что мы навязываем природе наш собственный человеческий язык. А законы природы написаны на некоем универсальном языке". </p><p>Это было как раз в тот период, когда после потрясающих успехов квантовой электродинамики получили согласие с опытом с точностью до восьмого знака и наткнулись, как на стену, на проблему сильных и слабых взаимодействий. И какие бы модели ни предлагались, они все равно не приводили к успеху. </p><p>Так вот, он говорил: "Надо не модели предлагать, а нужно понять язык, на котором записаны законы природы, нужно найти единый источник всех физических законов". В начале двадцатого века эта проблема волновала многих философов "серебряного века". Они понимали, что есть что-то, стоящее за этим материальным миром. Но они не знали математики, они не знали современной науки. Но только опираясь на современную науку, на современную математику, на современную физику, можно попытаться расшифровать этот язык и "найти единый источник всех физических законов". </p><p>И вот он поставил передо мной такую задачу: "Попробуйте найти этот универсальный язык. А где его искать? Он в законах. Он в законе Ньютона, в законе Ома, в уравнениях Максвелла, в уравнениях квантовой механики. Но только нужно найти то общее, что присутствует в каждом законе. То есть, отбросив детали, как бы подняться над физикой на высоту птичьего полета и посмотреть на эти законы сверху и найти нечто общее, универсальное". </p><p>И мне действительно повезло. Повезло сорок с лишним лет тому назад. Я нашёл метод, как можно отбрасывать ненужные детали и оставлять самое главное. И этим самым главным и явилась физическая структура. </p><p>Чтобы проиллюстрировать, что такое структура, которая лежит в самом основании мира, я приведу такой пример. Возьмите компьютер. Если заглянете внутрь, то вы увидите множество проводников, множество деталей. И если вы даже будете изучать эти детали досконально методами физики, вы всё равно не поймете, что такое компьютер, что составляет его сущность. Так вот, сущность компьютера составляет программа. Программа это нечто иное, чем те самые детали, без которых компьютер не будет работать. Но в то же время без программы компьютер превращается просто в ненужный никому железный хлам. Так вот, по такому же принципу и построен Мир как единое Целое.</p><p>Вот главное – нужно открыть то, что скрывается за этим видимым миром материальной действительности. Это еще Кант или до него уже многие философы говорили, что существует внешнее и внутреннее. Явление и сущность. Феномен и ноумен. Вот на этой диаграмме как раз и показана первая дихотомия, отделяющая наш материальный мир, который можно потрогать, который можно изучать приборами, отделяющая от мира иной реальности, как раз от мира этих структур, от мира этих программ. </p><p>Начало XXI века – это не просто календарная дата, а это начало новой Единой картины Мира. Я убежден в том, что в двадцать первом веке объектом изучения науки, и физики в частности, станет именно невидимый Мир Высшей реальности. Такой же невидимый, как и микромир. Но оказывается, этот мир совершенно иной природы. Он тоже может быть исследован с помощью математики.</p><p>И посмотрите, какая любопытная особенность этого Мира. Для изучения микромира нужно было расщепить целое на части. И расщеплять как можно больше и детальнее, расщеплять всё дальше и дальше. </p><p>Но для того чтобы ответить на вопрос, что же лежит в основе Мира, нужно посмотреть на этот Мир как на единое целое. Необходимо целостное описание Мира. То есть отвлечься от деталей и увидеть целое. </p><p>Представьте себе, что мы приходим в картинную галерею и нас подводят к картине, которая находится перед нашим носом на расстоянии десяти сантиметров. Мы видим пятна, краски, переходим в другое место – снова пятна, краски. А в целом картину мы не увидим. Для этого нужно отойти от картины на несколько метров. Вот так же и нужно посмотреть на Мир, отойдя от него. Значит, нужна математика, которая наоборот основана не на анализе, не на расщеплении, а на синтетическом видении мира.</p><p>И вот оказывается, такая математика (исчисление кортов) уже создана. Это и есть Теория физических структур. У меня появились талантливые ученики и последователи. И через несколько лет в Новосибирске, в Горно-Алтайске, в Барнауле, в Москве появилась целая школа по Теории физических структур.</p><p>В Московском университете к нашей школе близко "неслиянно и нераздельно" примыкает научное направление, развиваемое известным физиком-теоретиком, профессором кафедры теоретической физики МГУ Юрием Сергеевичем Владимировым – моим близким другом и коллегой. </p><p>Итак, нужно воспользоваться новым математическим исчислением кортов, которое оперировало бы не с отдельными элементами, а с конечными множествами – кортами. Заметьте – в современной физике никто не рассматривает одновременно множество разных физических объектов. Современная наука занимается рассмотрением отдельных физических объектов и отдельных явлений. </p><p>При этом мне вспоминается моя последняя и единственная встреча с академиком Владимиром Александровичем Фоком, к которому я приехал в 1970 году в Ленинград, чтобы рассказать ему о своих работах по Теории физических структур и, в частности, о новой точке зрения на закон Ньютона.</p><p>Он встретил меня весьма доброжелательно, пригласил к себе домой и приготовился внимательно выслушать меня. Но когда я сказал:</p><p>- Рассмотрим два тела и две пружинки и измерим четыре ускорения … </p><p>Здесь он перебил меня:</p><p>– Простите, о чём идёт речь? о механике материальной точки? или о механике системы, состоящей из двух материальных точек?</p><p>Я ответил:</p><p>– Речь идёт о механике материальной точки, то есть о новой точке зрения на закон Ньютона.</p><p>– Но почему же вы рассматриваете два тела? Нет, я вас не понимаю! – и выключил свой слуховой аппарат, дав понять тем самым, что дальнейший разговор на эту тему лишён для него всякого смысла.</p><p>Действительно, очень трудно взглянуть на хорошо известную ещё с детства механику с существенно иной, непривычной точки зрения.</p><p>Чтобы объяснить, что такое корт, я начну, пожалуй, с наиболее наглядного примера.</p><p>Что такое физический закон? Не закон Ньютона и не закон Ома, а физический закон вообще? Чтобы ответить на этот вопрос, начнём с простейшего примера – с законов, лежащих в основании геометрии евклидовой прямой, геометрии евклидовой плоскости и геометрии трёхмерного евклидова пространства.</p><p>Возьмём две произвольные точки, лежащие на прямой, – двухточечный корт (корт – сокращённая форма слова кортеж. Кортеж – конечная последовательность элементов какого-либо множества), и измерим расстояние между ними. Это расстояние ничем не ограничено и может меняться от нуля до бесконечности. Никакого закона ещё нет.</p><p>Но если мы возьмём трёхточечный корт и измерим три расстояния между его тремя точками, то мы столкнёмся с качественно новой ситуацией. Три точки на прямой можно рассматривать как вершины "сплюснутого" треугольника, площадь которого равна нулю при любом расположении точек. Но с другой стороны, площадь треугольника зависит от длин трёх его сторон (формула Герона). Следовательно, между тремя расстояниями существует определённая связь, которая и есть простейший закон одномерной евклидовой геометрии.</p><p>Рассмотрим теперь трёхточечный корт на евклидовой плоскости и измерим три расстояния между его тремя точками. В этом случае площадь треугольника может меняться от нуля до бесконечности и, следовательно, между тремя расстояниями нет никакой связи. </p><p>Но если мы рассмотрим четырёхточечный корт и измерим шесть расстояний между его четырьмя точками, то мы столкнёмся с ситуацией, подобной той, которая наблюдалась на прямой. А именно, четыре точки на плоскости можно рассматривать как вершины "сплюснутого" тетраэдра, объём которого равен нулю при любом расположении точек. Но с другой стороны, объём тетраэдра зависит от длин его шести рёбер (формула Тартальи). Следовательно, между шестью расстояниями между четырьмя точками, произвольно расположенными на плоскости, имеет место вполне определённая связь, которая и есть простейший закон двумерной евклидовой геометрии.</p><p>Рассмотрим теперь четырёхточечный корт в трёхмерном евклидовом пространстве и измерим шесть расстояний между его четырьмя точками. В этом случае объём тетраэдра может меняться от нуля до бесконечности и, следовательно, между шестью расстояниями нет никакой связи.</p><p>Но если мы рассмотрим пятиточечный корт и измерим десять расстояний между его пятью точками, то мы обнаружим существование вполне определённой связи между десятью расстояниями пятиточечного корта. Эта связь и есть простейший закон трёхмерной евклидовой геометрии.</p><p>Аналогичным свойством возникновения закона при достижении векторного корта определённой длины обладает множество векторов в n-мерном линейном пространстве: если длина корта меньше или равна размерности линейного пространства, то векторы этого корта линейно независимы и между их скалярными произведениями нет никакой связи; если же длина векторного корта больше размерности линейного пространства, то векторы этого корта линейно зависимы и между их скалярными произведениями есть вполне определённая связь (обращение в ноль определителя Грама). А это и есть простейший закон, которому подчиняются векторы n-мерного линейного пространства.</p><p>Однако множества точек евклидовой прямой, евклидовой плоскости и трёхмерного евклидова пространства обладают ещё одним замечательным свойством.</p><p>Если в случае евклидовой прямой взять не один трёхточечный корт, как в предыдущем случае, а два произвольных трёхточечных корта и измерить девять расстояний между каждой точкой первого корта и каждой точкой второго корта, то все эти девять расстояний окажутся связанными между собой одним вполне определённым соотношением, которое является фундаментальным законом, лежащим в основании одномерной евклидовой геометрии.</p><p>Точно так же поступим в случае евклидовой плоскости. Рассмотрим два произвольных четырёхточечных корта и измерим шестнадцать расстояний между каждой точкой первого корта и каждой точкой второго корта. Можно показать, что все эти шестнадцать расстояний связаны между собой одним вполне определённым соотношением, которое является фундаментальным законом, лежащим в основании двумерной геометрии.</p><p>В случае трёхмерного евклидова пространства рассмотрим два произвольных пятиточечных корта и измерим двадцать пять соответствующих расстояний. Можно показать, что все эти расстояния связаны между собой одним соотношением, представляющим собой фундаментальный закон, лежащий в основании трёхмерной евклидовой геометрии. </p><p>Итак, мы можем сказать, что фундаментальный закон, лежащий в основании n-мерной евклидовой геометрии, представляет собой определённый вид отношений между двумя (n+2)-точечными кортами.</p><p>В случае векторной алгебры мы можем сказать почти то же самое: фундаментальный закон, лежащий в основании n-мерного векторного пространства, представляет собой определённый вид отношений между двумя (n+1)-векторными кортами.</p><p>Если мы перейдём от евклидовой геометрии и векторной алгебры к рассмотрению фундаментальных физических законов, лежащих в основании самых различных разделов физики, то мы всюду обнаружим одно и то же: </p><p>два множества физических объектов различной или одной и той же природы;</p><p>репрезентатор – прообраз квадрата расстояния между двумя точками в евклидовой геометрии или прообраз скалярного произведения двух векторов в линейной алгебре;</p><p>два корта конечной длины, состоящие, соответственно, из s произвольных элементов первого множества и r произвольных элементов второго множества,</p><p>и верификатор – функцию s r числовых переменных, связывающую между собой s r репрезентаторов.</p><p>Оказывается, с точностью до физической интерпретации все фундаментальные физические законы – законы механики, теории относительности, термодинамики, электродинамики, квантовой механики и даже статфизики, а также многие разделы чистой математики построены по одному и тому же проекту, по которому построены евклидова геометрия, геометрии Лобачевского и Римана и векторная алгебра. Другими словами, можно сказать, что вся физика может быть изложена на едином языке сакральной геометрии. </p><p>В отличие от традиционной "антропной" геометрии на одном множестве, сакральная геометрия с самого начала строится на двух множествах различной природы. И, как и следовало ожидать, общеизвестная антропная геометрия представляет собой особый случай вырождения сакральной геометрии, когда исходные два множества сливаются в одно.</p><p>Естественно, что при таком вырождении многие разделы более богатой и содержательной сакральной геометрии (например, геометрии криптовекторов и криптоточек, имеющие самое прямое отношение к физике) оказываются утраченными.</p><p>Но самое главное, граничащее с чудом, является возникновение в сакральной геометрии неизвестных ранее сакральных самодостаточных функциональных уравнений. В отличие от всех хорошо известных в математике уравнений (алгебраических, дифференциальных, интегральных, функциональных), содержащих различные операции (сложение, умножение, возведение в степень, дифференцирование, интегрирование и т.п.), в сакральных уравнениях нет никаких операций, кроме подстановки одной неизвестной функции – репрезентатора в другую неизвестную функцию – верификатор.</p><p>И самое удивительное состоит в том, что эти уравнения имеют единственные решения, представляющие собой фундаментальные законы, лежащие в основании всех разделов физики, геометрии и некоторых разделов чистой математики.</p><p>Будучи переведённым на обычный человеческий язык, это утверждение означает следующее: если у вас имеется некий фундаментальный закон, то он должен иметь такую и только такую форму. То есть, где бы вы ни оказались, на Земле или далеко за пределами Солнечной системы, например, на звезде Альфа Центавры, или где-то ещё, если там существует какой-либо универсальный закон, то можно заранее написать возможные его формы. Оказалось, что всего существует только четыре решения. И вот всё многообразие физических законов механики, термодинамики, электродинамики, квантовой механики, теории относительности – всё в конечном итоге сводится к одному из этих четырех решений. </p><p>Представляете, как гениально просто выглядит сакральный План Творения, предшествующий Большому взрыву!</p><p>Другими словами, нам удалось найти то единственное зёрнышко, из которого вырастают разные разделы физики – механика, термодинамика, теория относительности, квантовая механика. Нужно задать только ранг соответствующих кортов – единственный свободный целочисленный параметр, и вы получаете формальное выражение для того или иного фундаментального закона. А дальше вы должны дать для этого выражения соответствующую физическую интерпретацию. </p><p>Представьте себе архитектора, который должен построить дом. В его распоряжении всего четыре типовых проекта с произвольным числом этажей и рабочих помещений (по аналогии с целочисленным рангом двух кортов).</p><p>Но этот дом пока будет состоять из голых стен, железобетонных перекрытий и пустых комнат. А для того чтобы этот дом, так сказать, ожил, нужно создать необходимый интерьер. Только тогда будет окончательно законченный дом. </p><p>Точно так же созданию той или иной физической теории предшествует чисто математический раздел Теории физических структур. И только тогда, когда вы дадите физическую интерпретацию, то есть укажете, из каких физических объектов образованы исходные два множества и какая измерительная операция скрывается под именем репрезентатора, то только тогда у вас получится конкретная физическая теория. </p><p>После этого, спускаясь вниз, вы получите, как соответствующие инварианты, те или иные физические величины и исходные уравнения этой теории в традиционных обозначениях, и придёте к той самой традиционной, хорошо всем известной физике. </p><p>Итак, образно говоря, физика представляет собой пирамиду, состоящую из двух частей: верхней – сакральной физики, в основании которой лежит абстрактная Теория физических структур, и нижней – антропной физики, в основании которой лежат наглядные антропные модели. Между ними расположен некий "облачный слой", подобно смогу закрывающий верхнюю половину. </p><p>В отличие от объяснений в антропной физике, сводящих любое физическое явление или закон к наглядным (антропным) моделям, понимание идёт дальше – оно выстраивает цепочку понятий до последней общезначимой первопричины неживой природы – до физической структуры.</p><p>В свете вышесказанного, герменевтика – это форма знания, в основании которой лежит выявление сущности и смысла, скрытых за очевидными явлениями. </p><p>Что же касается сущности физических и геометрических законов, то для того чтобы понять, в чём смысл и сущность основных законов и понятий физики и геометрии, необходимо было создать новую область знания с новыми целями, с новыми задачами, с новым математическим аппаратом – исчислением кортов.</p><p>Перед нами стоит необычная задача: реконструкция физики как единого целого на принципиально новых основаниях с целью:</p><p>1. раскрытия её внутренней простоты, самосогласованности и гармонии;</p><p>2. установления нового взгляда на хорошо известные ещё с детства, привычные понятия и законы;</p><p>3. облегчения преподавания физики в средней школе и в университете;</p><p>4. устранения накопившихся в физике мифов;</p><p>5. объединения физики и математики в единую область знания и</p><p>6. установления границы их применимости.</p><p>Что же такое математика? Что является объектом её изучения? С точки зрения антропной физики математика – это придуманный математиками аппарат, который непостижимым образом оказался весьма эффективным при использовании его в качестве многочисленных моделей Мира материальной действительности. </p><p>С точки зрения сакральной физики или Теории физических структур, математика – это область знания об объективно существующих категориях и математических структурах, составляющих монолитный фундамент Мира Высшей реальности. Математики открывают, а не изобретают их.</p><p>Та математика, которая изучается в средней школе, в университетах, исходит из некой наглядной природы математических объектов. То есть в одном случае говорят – это число, в другом случае говорят – это прямая, окружность, эллипс, поверхность, в третьем случае говорят – это функция. То есть предполагается, что математические объекты имеют некую "природу", в соответствии с которой вся математика разделяется на целый ряд разделов.</p><p>И вот математиков заинтересовала такая вещь, а что скрывается за этими конкретными разделами математики? Давайте откажемся от этой неуловимой "природы" математических объектов и будем просто обозначать эти объекты какими-нибудь символами.</p><p>При этом выяснилось, что вся математика свелась к следующему.</p><p>Имеется некое множество, имеется система аксиом, которая описывает отношения между элементами множества, не прибегая к понятию "природы" математических объектов. Такие "обезличенные" множества с заданной на них системой аксиом назвали математическими структурами. </p><p>Французские математики под общим псевдонимом Бурбаки установили, что вся математика представляет собой некую картину, написанную тремя красками. Они установили существование трёх порождающих математических структур из которых следует вся математика. Это – алгебраическая структура, структура порядка и топологическая структура. Если взять часть аксиом из одной структуры, соединить с другой, то мы получим много разных разделов математики. </p><p>А потом задали такой вопрос – хорошо, а что есть общего между структурой порядка, структурой алгебраической, структурой топологической. А давайте отбросим не только "природу" математических объектов, но эти аксиомы. И тогда математики подошли к самой вершине, они назвали её категорией. Категория определяет отношения между произвольными ко- и контравариантными объектами с помощью, так называемых, морфизмов.</p><p>Таким образом, оказывается, что мир математики представляет собой пирамиду, разделённую на две части неким "облачным слоем", отделяющим верхнюю часть пирамиды – сакральную математику, имеющую дело с наиболее абстрактными понятиями: категорией и математическими структурами, от нижней части – антропной математики, имеющей дело с математическими объектами, в которых можно усмотреть наличие определённой математической "природы", и которые вносят в математику определённый элемент наглядности. Что же касается сакральной математики, то она вплотную подводит нас к понятию Истины.</p><p>Что есть Истина? На этот вопрос невозможно ответить, оставаясь на уровне антропного знания. Вспомните известную картину Ге "Что есть истина?" Перед лицом неправедного судьи – Пилата стоит Христос. Он почти не говорит с ним, Он почти не оправдывается, потому что Он знает, что для Пилата нет Истины. Она его не интересует. Ведь Пилат, спрашивая: "Что есть истина?", – произносит это риторически, как бы заранее зная, что ответа нет, что никакой истины нет.</p><p>В самом деле, если оставаться на уровне антропной науки и принять в качестве критерия истины практику или согласие выводов теории с опытом, то истина превратится в банальность типа: Мел – бел, или Волга впадает в Каспийское море. Дело в том, что в основании "дольнего", "плоского" антропного знания лежат наглядные модели – образы, а понятие Истины неразрывно связано с понятием прообраза, возникающим уже на другом уровне "горнего" сакрального знания. Один единственный прообраз (сущность) проявляется и находит своё выражение во множестве образов (явлений), и потому Истина ассоциируется с горной вершиной или с вершиной пирамиды в "горнем" мире сакральной науки.</p><p>Таким образом, в мире сакрального знания критерием Истины является не "соответствие действительности" и не столько согласие выводов теории с опытом, сколько похожая на чудо, самосогласованность множества на первый взгляд совершенно различных явлений, вытекающих, как следствие, из одного единственного общего принципа. И чем больше и разнообразнее такое множество, тем надёжнее работает этот критерий. В этом смысле Теория физических структур удовлетворяет самым высоким критериям Истины.</p><p>Итак, по большому счёту, согласие выводов теории с опытом не является критерием Истины, как принято считать, а лишь критерием правдоподобия. Что же касается подлинного критерия Истины, то им является самосогласованность всего со всем.</p><p>Как следует из Теории физических структур, все без исключения разделы физики и геометрии образуют единую самосогласованную систему, которая мгновенно развалится, если в её основании заменить хотя бы один камень.</p><p>Таким образом, мы приходим к мысли, что наглядным образом Истины является вершина пирамиды. Вершина в физике – это физическая структура; вершина в математике – это категория; вершина в биологии – это генетический код; вершина в сакральной антропологии – это лингвистический код.</p><p>Спускаясь вниз с этих сакральных "заоблачных вершин", мы получаем всё разнообразие этого мира – разнообразие законов физики, разнообразие математических теорем, разнообразие живых организмов, разнообразие и неповторимость личностей.</p><p>Таким образом, мы приближаемся к разгадке Плана Творения. Что было до Большого взрыва? На этот вопрос официальная наука не отвечает. Она утверждает, что после Большого Взрыва возникло и пространство-время, возникли законы, возникли элементарные частицы, поля. А вот что было до Большого взрыва? Этот вопрос считается бессмысленным. </p><p>А на самом деле он вполне осмысленный. Согласно теории номогенеза, предложенной Л.Бергом и С.Мейеном, до Большого взрыва была Программа Творения. Большой Взрыв – это и есть начало реализации этой Программы.</p><p>Представьте себе дом, которого ещё нет. Есть проект этого дома, где всё предусмотрено вплоть до отверстий в стенах, куда будут проходить трубы и провода. А дома ещё нет. А дом начинается с фундамента, и он растет, растет в соответствии с этой программой. </p><p>Вот также устроен Мир. В какой-то момент в Мире Высшей реальности включается та или иная программа. То есть эта программа в целом, она как бы состоит из пакетов программ. Вот есть пакет программ, которые ответственны за создание материальной оболочки мира. Вещество, поле, физика – все, на этом кончается. </p><p>Потом включается новая программа – программа возникновения жизни. Вот очень любопытно, посмотрите, целью этой программы является человек. Человек как бы должен олицетворять Творца мира, воплощенного телесно. И вот для того чтобы существовал человек, необходимо создать среду обитания, его ойкумену. Причем, удобную среду, чтобы всё было согласовано. То есть, в частности, для человека, для его существования очень важен некий периодический процесс: работа – отдых, работ – отдых. И нужно согласовать закон физиологии с законом движения Земли, то есть нужно закрутить Землю так, чтобы за 24 часа сменялась ночь на день. Необходим другой цикл, чтобы менялись времена года, нужно ось Земли повернуть на определенный угол – и возникает периодическая смена времен года. </p><p>То есть в этой программе предусмотрено заранее все для того, чтобы возник человек, чтобы этот человек мог жить в этом мире.</p><p>И вот любопытно, существует два способа использования энергии для живого организма. Первый высокоэффективный способ – это горение. Происходит окисление, при этом выделяется большое количество энергии. Но для этого нужен кислород. Второй низкоэффективный способ – тление. Это когда крупная молекула разбивается на две молекулы поменьше, происходит тление. Выделяется энергия, но очень мало. </p><p>И вот, смотрите, как красиво задуман этот мир – для того чтобы появился процесс горения, необходимо создать кислородную атмосферу. Для этого создаются микроорганизмы, так называемые прокариоты, которым наша планета в первую очередь обязана существованием кислородной атмосферы. </p><p>Дело в том, что они обладают удивительным свойством разлагать воду и тем самым создавать свободный кислород. Прокариоты, по-видимому, практически не знали естественной смерти. Они могли существовать в весьма жёстких условиях, которые три миллиарда лет тому назад были на нашей Земле: активная вулканическая деятельность, интенсивная ультрафиолетовая радиация, не удерживаемая озоновым слоем. Они были самыми приспособленными живыми существами, которые когда-либо жили на Земле. Их потомки, например сине-зелёные водоросли, и сейчас обладают исключительной жизнестойкостью.</p><p>Но когда кислородная атмосфера достигла своего нужного уровня, прокариоты были вытеснены эукариотами с их кислородным дыханием, из которых спустя один миллиард лет возникли живые организмы. Эукариоты были уже смертны в обычном смысле этого слова. Эту цену они заплатили за обретение кислородного дыхания, но вместе с ним они приобрели во много раз большую, чем у прокариотов, эффективность использования энергии.</p><p>Но каждая программа как бы закодирована определенным образом. Так физические законы, оказывается, закодированы очень простым образом – одним сакральным уравнением. Это сакральное уравнение замечательно тем, что все его решения представляют собой фундаментальные законы, лежащие в основании всей физики и геометрии. Самое удивительное то, что можно доказать, что никаких других законов не может быть никогда. Другими словами, мной обнаружено самое общее свойство любого фундаментального закона, накладывающее на вид этого закона гораздо более сильное ограничение, чем, например, требование сохранения физической размерности. Каждый школьник знает, что когда вы пишете какую-то формулу, описывающую тот или иной физический закон, то физическая размерность справа обязательно должна совпадать с размерностью слева. Таким образом, сразу же можно сказать, верна ли эта формула или нет. </p><p>И вот оказывается, если потребовать, чтобы этот закон был бы справедлив для любых объектов из данного множества, то это требование оказывается очень жёстким требованием. Оно может быть строго математически описано и сформулировано в виде одного сакрального уравнения. Как показал Михайличенко, это уравнение имеет единственное решение, допускающее простую физическую или, точнее, сначала геометрическую интерпретацию. </p><p>Вот эта теорема о существовании и единственности решения сакрального уравнения и является главным результатом Теории физических структур. И вот в отличие от академической науки, которая имеет дело с уравнениями алгебраическими, дифференциальными, интегральными, функциональными, где всегда присутствует некая операция, которая как бы вносится руками, вот эти сакральные уравнения не содержат внутри никаких операций – ни операций сложения, ни операций умножения, ни дифференцирования. Они просто представляют собой две неизвестных функции, вложенные одна в другую. Эти уравнения возникли в рамках Теории физических структур сорок лет тому назад. В каком то смысле – это самые простые уравнения, так как в них ничего не вкладывается извне "руками", </p><p>Это воистину сакральные уравнения, лежащие в самом основании Мира и порождающие все фундаментальные законы физики и геометрии. Удивительные свойства этих уравнений рассмотрены в многочисленных публикациях моих учеников – профессора ГАГУ Геннадия Григорьевича Михайличенко и старшего научного сотрудника Института ядерной физики СО РАН Владимира Ханановича Льва. И странно, что никто из математиков не обратил на них внимания.</p><p>Сорок лет прошло с тех пор, как я ушёл из академической науки, чтобы посвятить остаток своей жизни поиску сакрального языка, на котором написаны законы природы. Мне повезло, что по предложению Тамма я оказался в Новосибирском университете. Там я нашёл идеальные условия для реализации своих идей. Ректор университета, академик Беляев предоставил мне полную свободу заниматься тем, чем я хочу. И хотя он не очень понимал, чем я занимаюсь, он никогда не отказывал мне в многочисленных командировках на различные конгрессы, конференции и семинары, и буквально спас меня от репрессий, последовавших после подписания нами "Письма сорока шести". Всё это дало мне возможность заниматься своим любимым делом: читать спецкурс по Теории физических структур, в течение многих лет вести семинар по ТФС и, в конце концов, создать из моих учеников и последователей целую школу по Теории физических структур.</p><p>Мой ученик Геннадий Григорьевич Михаличенко совершил научный подвиг, доказав фундаментальную и весьма трудную теорему о существовании и единственности четырёх типов физических структур. Полученные им результаты, несмотря на их "еретическое" происхождение, были защищены им сначала как кандидатская, а затем и как докторская диссертации в Институте математики СОАН СССР. После него по этой же "еретической" тематике были защищены ещё три кандидатских диссертации.</p><p>Теперь представьте себе физику и математику как большую горную страну и в этой стране – "горнюю" деревню, лежащая вдалеке от протоптанных дорог. И вот в этой деревне собралось несколько, тогда ещё молодых, физиков и математиков, неудовлетворённых положением дел в теоретической физике, чтобы подвести под неё надёжные основания.</p><p>Исходные идеи и строгая постановка математической задачи были ясны</p><p>с самого начала. Однако построение Теории наткнулось на, казалось, непреодолимые математические трудности. Но вот аспирант Михайличенко доказал свою удивительную теорему. Тем самым он пробил первую тропу сквозь лес, который окружал эту деревню, перевитый лианами, и заросший колючками. За ним пошли Владимир Лев, Юрий Сергеевич Владимиров, Виктор Иванович Шахов, Андрей Симонов и другие, существенно расширившие эту тропу.</p><p>И вот мы вышли на берег океана. Перед нами открылся новый, невиданный ранее, Мир Высшей реальности, построенный по единой сакральной Программе, со своими задачами, со своим математическим аппаратом, с новыми понятиями и новыми, неизвестными ранее, сакральными уравнениями.</p><p>Мы строим корабль. Понимаете? Корабль! И спускаем его со стапелей. Вот эта книга, которую я писал в течение сорока лет (С каким-то суеверным страхом вспоминаю, что столько же лет водил свой народ по бесплодной пустыне Моисей) и которую я готовлю к изданию. Она как раз и представляет собой этот Корабль с алыми парусами. И уже ветер полощет его паруса. </p><p>Теперь нам нужно набрать команду – не менее сорока человек, которые отправились бы с нами в этот новый, невидимый и ещё неизведанный и неисхоженный Мир Высшей реальности. Дело в том, что у меня имеется не менее сорока различных задач из области сакральной физики и сакральной математики, которые я знаю, как они решаются. Я знаю их решение. Но мне нужно сорок человек – физиков и математиков, которые бы взяли на себя труд спуститься с сакральных высот на уровень антропной математики и переписать последовательно и строго решения этих задач на обычном языке традиционной академической науки.</p><p>И тогда мы будем публиковать все эти наши работы в специально созданном журнале "Теория физических структур", где мы соберём все наши опубликованные и ещё неопубликованные работы по ТФС. У нас уже есть более ста семидесяти опубликованных работ. Но это – лишь куски, фрагменты всей Теории физических структур. Их невозможно читать, если ты не знаешь, не видишь изложения всей этой новой науки в целом, с самого начала и до конца. Это должна быть толстая книга, толстая монография. И вот после этого уже можно читать эти работы.А.Г. Может быть, ваш призыв будет услышан, и найдутся эти сорок человек после сегодняшней программы.Ю.К. Я надеюсь на это.А.Г. У меня к вам вопрос, который выходит за рамки, наверное, вашего знания и этой программы уж точно. Вопрос тоже сакральный, который преследует человечество все время, как только оно начало заниматься наукой, – зачем? И как по-вашему, вся эта, с вашей точки зрения, грандиозная вертикально выстроенная структура, постановки задач и их решения. Вся эта махина, которая была создана только для того, чтобы мы с вами имели возможность сегодня общаться. Зачем? Запустит ли она следующую программу? И какой эта программа может быть? Зачем в этом мире человек?Ю.К. Вся эта "махина" была создана не только для того, чтобы мы имели возможность общаться сегодня. Она представляет собой попытку взглянуть на Мир в целом как бы сверху, с вершины сакральной пирамиды.</p><p>Зачем это нужно? Это нужно, прежде всего, чтобы понять, что Мир построен на разумных началах, чтобы убедиться в существовании сакральной Истины и единого сакрального Плана Творения.</p><p>Это нужно, чтобы, взглянув на Мир "сверху, с высоты птичьего полёта", увидеть то, чего не увидишь, находясь "на земле, в дремучем лесу, перевитом колючими лианами фактов".</p><p>Это нужно, чтобы убедиться в объективном существовании двух Миров – антропного видимого Мира эмпирической (материальной) действительности и сакрального невидимого Мира Высшей реальности, существующих нераздельно и неслиянно.</p><p>Это нужно для того, чтобы найти естественный и разумный путь из Мира эмпирической действительности в Мир Высшей реальности, найти строгое математическое доказательство связи, существующей между этими Мирами.</p><p>Это нужно, чтобы понять, какое место занимает человек в этом Мире, в чём смысл его существования. </p><p>И наконец, это нужно для того, чтобы удовлетворить величайшую потребность человека в свободном полёте мысли, в открытии новых явлений, новых сущностей и новых Миров.</p><p>Вспомним в связи с этим повесть-притчу Ричарда Баха "Чайка по имени Джонатан Ливингстон". Смысл её состоит в следующем. В Стае чаек, которые одержимы только добычей рыбы с приходящих судов, вдруг появляется чайка, которая открыла для себя красоту и радость полёта. Она устремляется в небо и испытывает при этом огромное счастье от самой возможности свободного полёта. Эта чайка по имени Джонатан Ливингстон хочет обучить своих собратьев мастерству высшего пилотажа, показать им, какие при этом дали открываются перед ними. </p><p>Но чайки Стаи не захотели поверить в радость полёта. Они были глубоко убеждены в том, что им не дано постигнуть смысл жизни, ибо он непостижим; они верили только в одно: они брошены в этот мир только чтобы есть и оставаться в живых до тех пор, пока у них хватает сил. Всякий, кто думает иначе, должен быть изгнан из Стаи. Чайку по имени Джонатан Ливингстон судила Стая и приговорила к Изгнанию. </p><p>Так вот, человеку, наряду с материальными потребностями, присущ вот этот страстный интерес к познанию всего нового, необычного, к открытию новых стран и новых областей знания. В поисках новых миров люди надевают скафандры и покидают Землю. Летят куда-то, на какие-то планеты. Зачем? Какая от этого польза? </p><p>А человеку нужна не только польза. Ему скучно просто потреблять и просто жить в тепле и сытости. Понимаете? Он хочет вырваться из унылой повседневности, увидеть этот новый мир. И этот мир доставляет, оказывается, огромное наслаждение, гораздо большее, чем сытый желудок, дача, машина и комфорт в квартире. </p><p>Но зачем искать новые миры так далеко? Подлинную красоту можно увидеть совсем рядом – в Мире Высшей реальности. Одним из наиболее сильных побуждений, ведущих в этот сакральный Мир, является желание уйти от унылой повседневности с её мучительной жестокостью и беспросветной пустотой, уйти от уз вечно меняющихся собственных прихотей и бесплодных желаний. "Эту причину можно сравнить, – писал Альберт Эйнштейн, – с тоской, неотразимо влекущей горожанина из шумной и мутной окружающей среды к тихим высокогорным ландшафтам, где взгляд далеко проникает сквозь неподвижный чистый воздух и наслаждается спокойными очертаниями, которые кажутся предназначенными для вечности". </p><p>Прекрасной иллюстрацией этого состояния сопричастности вечности является знаменитая картина Шишкина "Рожь": бездонное синее небо, полновесные колосья ржи, летящая ласточка, васильки, вековые сосны. Вот в этом Мире легко и приятно работать и жить. И есть путь в этот Мир; этот путь уже пройден нами.</p><p>Я просто приглашаю всех: давайте забудем на время о пользе, будем искать Истину! Но, оказывается, сама Истина обладает большой потенциальной полезностью. И высокая Истина, безусловно, приведёт к пользе. Но только не надо сразу искать эту пользу. Получается так, что если всё свести к пользе, то Истина уходит. Уходит, как вода меж пальцев, как драгоценное зерно из дырявого мешка.

gordon: Что есть время

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Александр Петрович Левич– доктор биологических наук</li><li>Александр Владимирович Коганов– кандидат физико-математических наук</li></ul><p><strong>Александр Гордон: 18 лет регулярных выступлений, которые являются итогом определенных размышлений, экспериментов, работы научной и творческой мысли. 18 лет – это только вашему семинару. А проблема времени стоит перед человечеством с самого начала осознания того, что есть ты, есть окружающий мир. И этот окружающий мир каким-то образом вокруг тебя движется, развивается, умирает – и умираешь ты. Так вот, в чем же феномен не времени даже самого, а феномен интереса человека ко времени? Александр Левич: Наверное, один из главных – это наш собственный внутренний интерес, потому что мы бренны, потому что наши дни не бесконечны. И потому, что есть внутреннее неприятие этой бренности. Осознаем мы это или нет, мы хотим узнать, почему, зачем, и, может быть, как ее избежать. Это интересно каждому из нас. Это интересно и науке, потому что, как мне кажется, при решении проблем естествознания, при решении фундаментальных вопросов, всегда приходилось изменять представления о времени. Получалось это, видимо, потому, что время так глубоко лежит в фундаменте наших представлений о мире, что мы не можем исключить его из рассмотрения при решении любых проблем. Для того чтобы сделать какой-то следующий шаг, приходится лучше разобраться в том, что такое время. Для меня самого есть чисто внутренняя причина, по которой я не могу не заниматься временем. Таковы мои образование и профессия теоретика, что мне кажется: нужно, чтобы в областях науки, где еще нет фундаментальных уравнений, такие уравнения появились. </p><p>Каждое фундаментальное уравнение движения – это есть описание интересующей нас реальности с помощью некоторого эталона изменчивости. И оттого, каким мы себе представляем время и какова эта эталонная изменчивость, то есть часы, очень сильно зависит, сумеем ли мы угадать или вывести нужные уравнения. Это мой путь, по которому я пришел к проблеме времени. Хотя я понимаю, что у каждого путь свой.Александр Коганов: Свой, да. У меня по-другому, например, было. Я пришел к этой проблеме, скорее, от противного. Я по образованию математик. Математиков учат таким образом, что время исключено из математической теории, даже в тех случаях, когда явно указывается последовательность процедур. </p><p>И вот этот момент очень сильно вошел в противоречие с практикой, когда мне пришлось заниматься прикладными задачами. Там я увидел, что время, наоборот, является важнейшим фактором. И это отнюдь не параметр в уравнениях, а скорее – обстоятельство действия. Это важнейшее обстоятельство действия, внутри которого приходится существовать: надо успеть решить задачу, надо успеть получить данные для решения задачи. </p><p>И вначале я почувствовал интерес ко времени именно с этой стороны. В задачах, где время входит как бы в условие, в постановку задачи. Это всё очень важно в технике, в приложениях типа биологических, где приходится смотреть развитие объекта. Первые мои модели были в области биологии. И там я столкнулся с тем обстоятельством, что биологическое время само по себе нуждается в некоторой формализации – это не физическое время. Это другое время. А в технике мы сталкивались с вещами, когда приходилось менять единицу измерения времени с однородной на неоднородную. Например, бывали такие эффекты, когда неоднородные единицы времени, привязанные к особым событиям, позволяли использовать стандартные уравнения, ну, скажем, механики Ньютона, в то время как однородные единицы – не позволяли: какая-то идет внутренняя синхронизация процесса на свои часы. А потом, когда я уже занялся общей теорией моделирования, я посмотрел на время не изнутри, а как бы извне, на модель времени – что она из себя представляет. Это очень интересно, очень захватывает.А.Г. Почему всё-таки время стоит особняком среди всех физических величин, явлений, гипотез, в чем феномен?А.К. Это единственный физический объект, вообще не физический даже, а просто объект окружающего мира, который не обладает повторяемостью. Всё остальное можно попробовать дважды, трижды, проверить какую-то версию. Если какая-то гипотеза не подтверждается, ее можно отбросить. Если какое-то состояние нестабильно, значит, нужно укрупнить, рассмотреть макроуровень, как в термодинамике делается. И это относится абсолютно ко всей науке, не только к физике, ко всему, кроме времени. Время исчезает. Это постоянно исчезающий объект. А.Г. Тогда получается, что изучение времени не может быть научным занятием, раз сам объект не научен. Ведь у него нет такого важного для науки качества, как воспроизводимость. А.Л. К сожалению, это не единственная причина, почему изучение времени, может быть, не совсем наука. И это еще один ответ на ваш вопрос о том, почему и чем время отличается от других объектов науки. Дело в том, что любая наука начинается с исходных неопределяемых понятий, про которые бессмысленно спрашивать, что это и почему они такие, а не другие? Потому что они воспринимаются интуитивно, и мы надеемся, что интуиция разных исследователей одинакова, хотя надежда эта призрачна. Время – одно из таких понятий. Оно исходное и неопределяемое. Пока оно находится в этом своем статусе, его свойства также будут постулатами, аксиомами, но отнюдь не теоремами. И это неизбежно, это не дефект науки, просто мы заинтересовались понятием, статус которого отличается от большинства других научных понятий. Исходными и неопределяемыми в науке являются и многие другие понятия, например, пространство, заряд, масса, взаимодействие, энергия, движение, жизнь...А.Г. Какие гипотезы, теории, размышления, может быть, даже философские теории, были выдвинуты человечеством на пути изучения времени? Прежде чем мы перейдем, собственно, к вашим приоритетам.А.К. Время ассоциируется с потоком. Это, видимо, главный образ, который был создан еще в древности, в античности. Тогда же возникла идея, что нельзя дважды войти в реку. Эта идея неповторяемости была замечена. Время похоже на реку. Она всё время новая, но, несмотря на это, ее можно нанести на карту, у нее есть русло. В ней есть что-то постоянное. Пожалуй, изучение времени – это попытка изучить то постоянное, что мы в нем находим. Те постоянные свойства, которые наблюдаются. И тут очень много было интересных соображений, и они продолжают выдвигаться до наших дней. Важная революция произошла буквально в начале 20-го века. Представления о времени, скажем, в античном мире, в средние века и в новейшее время были различны. А XX век дал свое, совершенно новое представление о времени.</p><p>В начале ХХ века произошло осознание удивительных свойств времени. И мне кажется, что это понято уже навечно, по крайней мере, в рамках нашей непрерывной культурной традиции. Было понято, что пространство и время неразрывны, что это не два разных параметра (пространственная координата и временная координата), а есть единый четырехмерный мир, в котором топология и метрика так устроены, что некий сектор пространства выделяется. Этот сектор пространства мы и называем временем. Он обладает рядом свойств, одно из которых – необратимость движения в одном направлении. А остальные координаты этого четырехмерия позволяют в своем (пространственном) секторе плавно изменить направление движения на противоположное. Но время этого не позволяет. В то же время некоторые углы поворота времени оказались возможными. Но не так, чтобы повернуть назад. И эти углы мы называем скоростями. Вот это было радикальнейшее изменение, которое вошло в мир с появлением теории относительности. Появилось представление, что скорость – это поворот времени, поворот оси времени в четырех измерениях. Это повлекло за собой изменение наблюдаемых масштабов. Если одно тело движется с одной скоростью, другое с другой скоростью, они видят друг друга как бы под углом, но в четырехмерном мире. И время одного тела проектируется на время другого тела, причем проекции искажают масштабы. Это мы знаем и по обычным пространственным эффектам. Если стержень, например, линейку повернуть под углом, она будет казаться короче. Ее можно даже посмотреть в торец, и тогда ее длина просто в ноль обратится. Вот нечто в этом роде происходит и со временем – чем больше скорость объекта относительно нас, тем замедленнее кажется нам время, идущее на том теле, которое мы наблюдаем. Соответственно, наблюдателям, находящимся в той системе отсчета, будет замедленным казаться наше время. И все это – результат поворотов осей времени в четырехмерном пространстве. Это был великий прорыв в понимании структуры мира. Там такие имена, как Эйнштейн, Пуанкаре, Минковский, Гильберт. Они это сделали. Выделить кого-то одного невозможно, это был существенно коллективный разум. И мир изменился, представление о времени совершенно изменилось. А.Л. Теория относительности на самом деле ничего не говорит о том, что такое время, какова природа времени. Теория относительности возникла, когда появилась новая процедура выяснения – одновременны ли удаленные друг от друга события. В эту процедуру Эйнштейн ввел новый тип часов – световые часы, или часы Ланжвена. Такое небольшое нововведение, которое понадобилось для того, чтобы правильно ввести определение одновременности, оказалось достаточным для научной революции, которую связывают с теорией относительности. Но сама теория относительности не дает ответа на вопрос о природе времени, а всего лишь дает новый способ определения одновременности. А.К. Вообще, мне кажется, что путь Галилей-Ньютон-Эйнштейн (условно) – это путь, как сказал Ньютон, не изобретаемой сущности. Ньютон тоже не объяснял, что такое время. И Галилей не объяснял, что такое время. Это попытка реляционного – через соотношение величин – объяснения мира. То есть мы связываем измерение с какими-то математическими переменными и ищем уравнение, которое их связывает между собой. Это, конечно, не объяснение.А.Г. Есть другие подходы, которые настаивали бы на том...А.К. Есть попытки.А.Л. Когда мы говорим о времени, то подразумеваем, по крайней мере, три различных оттенка смысла: время-явление как синоним изменчивости Мира; время-часы как способ измерения изменчивости и время-понятие как конструкт человеческого мышления. Уметь измерять время – это еще не значит понимать его природу. Понять природу времени, на мой взгляд, – значит понять происхождение изменчивости Мира; понять, почему Мир не остается во всем постоянным; понять происхождение нового в Мире. Вопрос настолько глобален, что простых ответов на него нет. Я понимаю исследователей, которые уходят от попыток ответа на вопрос о природе времени. Но еще лучше я понимаю тех, кому этот вопрос не дает покоя. Эйнштейн говорил, что время – это то, что показывают наши часы. Может быть, такой ответ правилен в ситуации, когда нельзя сказать большего. Может быть, понять природу времени – значит указать природное явление, процесс или "носитель" в материальном мире, свойства которого можно отождествить или корреспондировать с тем, что мы хотим понимать под временем. Мне известно несколько таких конструктивных подходов. Одним из первых в середине 20-го века был подход Николая Александровича Козырева, пулковского астронома, открывателя лунного вулканизма. Собственно, Николай Александрович Козырев ввел представление о потоке времени как физической сущности. Для Козырева было важно, что эта сущность не совпадает ни с материей, ни с пространством, ни с полями в обычном их понимании, тем не менее она обладает свойствами, которые могут быть обнаружены физическими приборами. </p><p>20 лет трудов самого Николая Александровича, его помощников, его сторонников ушло на попытки экспериментально обнаружить свойства такого потока. С одной стороны, до сих пор эти попытки продолжаются; с другой стороны – нет убедительных доказательств того, что эти попытки дают декларированный результат. Потому что эффекты, которые наблюдаются во взаимодействиях тел по Козыреву, достаточно малы. К сожалению, нет достаточно кропотливого скрупулезного анализа того, что эти эффекты вызваны именно экзотическими свойствами новой сущности. Есть мнение, и оно мне кажется порой обоснованным, что эти эффекты могут быть объяснены самыми обычными физическими свойствами тел, связанными, например, с теплопроводностью, с конвекцией, с проводимостью – т.е. с известными явлениями физики. И тогда непонятно, какое место занимают предположения о времени как о потоке. Тем более что концепция Н.А. Козырева не подкреплена пока методологическим анализом, который позволил бы соотнести представления о новой сущности с ее очень необычными свойствами. </p><p>Например, поток времени переносит энергию, но не переносит импульс. Необходимо соотнести новые свойства с тем, что нам уже известно, то есть реализовать так называемый принцип соответствия, принятый в физике. Гипотеза Козырева эвристически необыкновенна, на мой взгляд, не только тем, что позволяет говорить об активных свойствах времени. Она еще ценна и тем, что дает новый мировоззренческий взгляд на устройство нашего мира. Распространено мнение, что наш мир деградирует. Другими словами это мнение называется "второе начало термодинамики". </p><p>Мир остывает, энергия переходит в тепловую форму, если все будет происходить так, как сейчас, если, скажем, мы не найдем какой-то материи, которая расположена между галактиками и по каким-то причинам не видна, то судьба мира предначертана. Галактики будут расходиться все дальше и дальше; вещество распадаться. Распадутся даже ядерные частицы, испарятся "черные дыры", и через сотни миллиардов лет в мире не останется ничего, кроме отдельных электронов и протонов, разбросанных на огромные расстояния. Это то, что называют "тепловой смертью". Но так происходит только в случае, если наша Вселенная изолирована, если нет какой-то подпитки... В концепции Козырева прозвучало, что у нашей Вселенной есть активное начало. Вот это активное начало – обоснованно или не очень обоснованно – было связано с потоком времени и с тем, что время связано с источниками энергии в звездных масштабах. Если Мир действительно открыт, то ему не грозит "тепловая смерть". Потому что второе начало работает, только когда система замкнута. И в самом деле, это не секрет ни для физиков, ни для астрономов, что следов деградации в нашей нынешней Вселенной почти нет. Мы видим и, чем глубже изучаем, тем видим все больше: во Вселенной повсеместно происходят мощные и сильные процессы, которые никак нельзя назвать деградацией. А.Г. То есть вместо процесса разрушения идет некое созидание.А.Л. Мировоззренческий аспект идей Николая Александровича Козырева, по-моему, очень значителен.А.К. Мне хочется немножко возразить вам. Это не единственный подход к понятию второго начала термодинамики, к росту энтропии. Больцман в конце 19-го века еще предложил модель, которая сейчас называется "динамическая система". В этой модели, в общем, все стационарно, система не деградирует и, в общем-то, не развивается. Она стационарна. Это некий, можно сказать, автомат, который как-то крутится сам в себе. А энтропия интерпретируется как наши сведения о том, что было раньше, то есть когда это было начальное состояние, момент начала наблюдения. Мы какое-то время наблюдаем за системой и видим ее новое состояние. В какой мере мы можем восстановить начальное состояние по тому, что мы видим сейчас? Если наблюдения ведутся абсолютно точно, то в детерминированной системе это всегда можно сделать, но придется вести все больше и больше обработку данных, то есть мера информации возрастает. Вот эту меру информации Больцман, по существу, и приравнял к энтропии. То есть энтропия – это та вычислительная работа, если так можно сказать, которую надо проделать для того, чтобы по тому, что мы видим сейчас, восстановить то, что было раньше. При этом система остается стационарной. Энтропия растет, но она связана как бы с взаимодействием наблюдателя. </p><p>Мне кажется, что очень важно в порядке референта времени указать ещё на современное представление о физическом вакууме. Это очень интересное новое понятие, относительно новое, в котором вещество подразумевается в неком агрегатном состоянии. Собственно говоря, есть большое количество экспериментов, подтверждающих, что это не фикция, что действительно это агрегатное состояние существует. Это так называемые виртуальные частицы, частицы, которые появляются на очень короткое время и опять исчезают, переходят, то есть срабатывает вначале как бы их рождение, а потом срабатывает их поглощение тем же самым вакуумом, он поглощает себя. Это очень хорошо, кстати, корреспондируется с древней легендой о времени, которое пожирает своих детей. Физический вакуум в современном представлении устроен именно таким образом, он пожирает частицы, которые он сам же и родил. И вот этот физический вакуум ассоциируется, по существу, с тем пространством, которое не заполнено активной материей, стационарной материей, которую мы называем "массивными телами", активными "волнами" света. </p><p>Со свойствами этого вакуума можно связать, например, такой удивительный факт, как постоянство скорости света во всех системах координат. Если считать, что свет распространяется в физическом вакууме как по среде, то начинает выступать такой интересный факт: физический вакуум покоится во всех системах координат. Потому что виртуальная частица не имеет определенного импульса, она имеет только определенные координаты и, родившись, одна частица принадлежит одной системе координат, другая – другой, они живут короткое время, исчезают, а вакуум, в целом, покоится в любой системе координат. Таким образом волна, идущая по этой среде, имеет одну и ту же скорость во всех системах координат. И релятивистские свойства таким образом получают референт, физический вакуум выступает как референт преобразований Лоренца.А.Л. Я понимаю. Но почему вы связываете свойства вакуума со свойствами времени?А.К. Потому что вакуум – это четырехмерный, а не трёхмерный объект. Вакуум заполняет четырёхмерие, в котором есть и секторы времени, и секторы пространства.А.Л. Мы все заполняем четырехмерие...А.К. С этим замечанием я полностью согласен. Но всё-таки мне очень нравится концепция, что время не есть нечто отдельное от пространства, а время есть особый сектор четырёхмерия, и это четырёхмерие, как вместилище мира, имеет своё физическое качество. А.Л. Но ведь пространство – это срез четырёхмерного мира.А.К. Пространство, то, что мы называем пространством, – это определенный срез.А.Л. Поэтому, когда вы говорите про сектор, мне это не очень понятно. Сектор в пространстве, так сказать, это сектор в срезе. А время, это вся субстанция. То, что вы говорите про вакуум и время, я понимаю так, что вакуум – это пример одной из субстанций. Когда мы говорим о субстанциональности времени, можно говорить, что есть поля, есть вакуум, т.е. уже есть примеры субстанций, и субстанция – это не что-то совсем экзотическое. Поэтому, говоря о времени как о субстанции, мы не нарушаем правила, которые есть в науке.А.К. Понятно. Я здесь говорю о времени, не как о субстанции. А как о некоторой анизотропности этой субстанции. Иными словами, в этом четырёхмерном пространстве, или в вакууме, свойства зависят от направления. Если в обычном, привычном нам трёхмерном пространстве (а это суть срезы этого четырёхмерия) свойства пространства не зависят от направления, то в четырёхмерном пространстве они начинают зависеть от направления. И одно из этих направлений (то, свойства которого отличны от трех других направлений) мы и называем временем. Вот там, где, например, нарушается возвратность, возможность возврата...А.Л. Конечно. Но непонятно, откуда это свойство берётся. Ведь при четырёхмерии это просто постулат, что в одном из направлений есть свойство необратимости.А.К. Постулатом, скорее, является метрика четырёхмерия. А уже из этой метрики вытекает, что некоторый сектор обладает особыми свойствами. И метрика, конечно, экспериментально проверяется. А.Г. Пейджер опять разрывают, что доказывает актуальность вопроса для каждого живущего, то есть развивающегося и исчезающего во времени. Но раз уж вы затронули разные концепции, в том числе и Козыревскую, которая не получает пока экспериментальных подтверждений... В одной из наших программ (и вопрос на пейджер пришёл именно об этом) излагалась та концепция, что реликтовое излучение может являться, по сути дела, физическим носителем времени. Как вы относитесь к этой концепции?А.К. Я резко отрицательно к этому отношусь. Я помню эту передачу, и я хорошо знаю автора концепции, он участник нашего семинара, Григорий Михайлович Дмитриевский. Мы с ним довольно часто дискутируем на эту тему. Суть дискуссии заключается в следующем. Нейтрино, пусть даже реликтовые, сами по себе являются частицами, и даже если предположить, что все остальные частицы распространяются по ним, как по среде, то есть они являются тем самым эфиром, по которому распространяются волновые функции как объект, то возникает вопрос: а сами-то нейтрино, в чем и как распространяются. Они же не могут быть средой для самих себя. Значит, им всё равно требуется какая-то внешняя среда. </p><p>То есть, мне кажется, что реликтовые нейтрино здесь не спасают положение. Это как бы перенос ответа на вопрос на один шаг. Все частицы мы сажаем на реликтовые нейтрино, но тогда непонятно, куда, на что посадить сами эти нейтрино, они же тоже распространяются волновыми функциями, если это нейтрино. У них есть обычные квантовые свойства. Значит, для них всё равно требуется какая-то среда. Как раз концепция физического вакуума мне нравится тем, что она этот вопрос решает: физический вакуум самодостаточен. Он сам не распространяется, но действительно является средой, по которой распространяется всё остальное. Это особое агрегатное состояние вещества. </p><p>Понижая активную энергию вещества, мы проходим через плазму, газ, жидкость, твердое тело, сверхпроводимость. А еще ниже приходится уже разрушать атомы, чтобы понизить энергию связи. Далее, нужно уменьшать стабильность элементарных частиц, и тут мы доходим до состояния вакуума. Это агрегатное состояние с наименьшим возможным уровнем наблюдаемой энергии. </p><p>То есть, эта концепция с нейтрино кажется хуже, чем концепция физического вакуума, и порождает некоторые очень трудноразрешимые вопросы. Но я не знаю, как на самом деле реализуются квантовые процессы, конечно.А.Л. Я сам сторонник субстанционального подхода к происхождению времени. Я готов и реликтовые нейтрино рассматривать, как претендентов на искомую субстанцию для времени. Но наша Вселенная не открыта по отношению к реликтовым нейтрино. А время, по-моему, – свойство открытых систем. К тому же нейтрино, хотя и очень тонкая материя, но они – те же частицы. А с мой точки зрения, субстанция, которая порождает время, субстанция, по отношению к которой открыта наша Вселенная, не является такой же материей, какой являются обычные фермионы – т.е. электроны, протоны, нейтроны и другие частицы с полуцелым спином. Дело в том, что, на мой взгляд, эта субстанция как раз порождает частицы и порождает взаимодействие этих частиц, но не является ни самими частицами, ни носителем взаимодействий. Если нужен какой-то наглядный образ, то я привел бы пример ключа, который бьет в водоеме, или фонтана, который фонтанирует внутри водоема, и этот водоем наполняет. Такой фонтан – и есть частица. Накопление, убыль или "прохождение" субстанции порождают изменения в нашем мире. Динамические свойства субстанции, "фонтанирующей" в точках сингулярности, т.е. в частицах или зарядах, порождают взаимодействие частиц. Генерирующие изменчивость мира субстанциональные потоки принадлежат различным уровням строения материи. Непосредственно субстанция генерирующих потоков, по-видимому, не регистрируется современными исследовательскими технологиями. Она порождает частицы материи, но не является этими частицами. Она порождает взаимодействие материи, но сама не участвует в этих взаимодействиях. А.К. Здесь есть интересный вопрос, приносит ли эта предматерия, так условно скажем, энергию в себе, то есть, постоянна ли энергия Вселенной, или она растет, или она убывает? Есть и такая версия, что у Вселенной убывает энергия, что мы теряем ее. Энергия, как способность механического действия, она пока что сохраняется в современных теориях, и в опытах она, более или менее, сохраняется. Но концепция субстанционального времени ставит этот вопрос. Есть теории, в которых посчитано, сколько примерно поступает энергии во Вселенную со временем: получается – очень маленькие величины, и положительные, и отрицательные величины получаются очень маленькие. Они действительно за гранью экспериментов, которые сегодня ставятся. И тем самым вопрос остается открытым. Если бы было предсказано, что в каком-то месте возникает киловатт-час в минуту, допустим, то его можно было бы обнаружить. Но этого киловатта нет. Есть ничтожно малая величина, и объект остается пока экспериментально не воспроизводимым.А.Г. У меня вот какой вопрос. Если говорить о релятивистском представлении о времени и пространстве и о максимально возможной скорости перемещения как скорости света, то попытки осмыслить нечто, выходящее за пределы скорости света, – сверхсветовые скорости – так или иначе связаны с проблемой времени. Ведь в этом уравнении... А.К. Причинность. А.Г. Да, да, да, да, причинность. Можно поговорить о причинности, о стреле времени, то есть о направлении? И, поскольку очень много вопросов по поводу замедления или даже остановки времени, может быть, несколько слов о том, возможны ли они. Представимы ли они?А.К. Но вначале я, позвольте, изложу классическую концепцию, точнее, уже ставшую сейчас классической. Есть много способов замедления времени, которые частично даже реализуются, например, на ускорителях – это парадоксы близнецов – для этого надо тело вывести из системы координат наблюдателя, придать ему какую-то скорость, а потом замедлить. Тело возвращается значительно моложе, чем оно должно быть. В ускорителях секундами живут объекты, которые должны жить миллиардные доли секунды. Это и есть эффект парадокса близнецов. Фактически, по теории относительности, это результат тех самых поворотов оси времени. </p><p>Я излагаю классическую концепцию для объяснения этого наблюдаемого факта. Это результат того, что ось времени, которую называют "мировой линией" движущегося тела, поворачивается. И тело проживает свою жизнь как бы под некоторым углом к тому миру, в который она потом возвращается. За счет этого получается выигрыш во времени. Другой путь – тоже уже в 20-м веке полностью освоенный – это гравитационное изменение темпа времени. Вблизи гравитирующих масс время идет медленнее. Притом, там этот эффект в каком-то смысле абсолютный. Там действительно идет замедленное время для внешнего наблюдателя. Любое тело, помещенное туда, начинает медленнее, скажем, выдавать радиосигналы. Если пустить туда объект, похожий на первый спутник, то мы увидим, что он пищит всё медленнее и медленнее. Скажем, если бы такой передатчик падал на "черную дыру", то он бы замедлялся таким образом, что за бесконечное время падения на "черную дыру" он выдал бы только конечное число сигналов. То есть время замедляется в бесконечное число раз. Так что, по классической теории относительности, если нельзя сказать, что темп времени управляем в обычном смысле, рычагом управления, то, по крайней мере, он управляем путем перемещения в пространстве. А.Л. Или с помощью полей гравитационных. Это экспериментально обнаружено. Хотя есть гипотеза о том, что электромагнитное поле особой конфигурации и интенсивности также может менять собственное время.А.К. Да. Есть и такие гипотезы. Если теперь переходить к неклассическим представлениям, если действительно обнаружат субстанцию времени, то тут, конечно, возникает очень много вопросов. Есть ли там экран? Можно ли эту субстанцию разрядить или сгустить? Так сказать, что с ней можно делать как с субстанцией? Там уже возникнет некоторая более сложная система вопросов. Потом, что еще хочется сказать – стрела времени, направление времени. Теория относительности не допускает непрерывного поворота времени на 180 градусов. То есть, можно замедлять время, но нельзя заставить тело жить назад. Для этого приходится делать скачок. </p><p>В принципе, теория относительности допускает тела, которые живут по времени в обратную сторону. Больше того, допускаются тела, которые двигаются в неопределенном направлении времени – тахионы – так называют тела, которые двигаются быстрее, чем свет. И в разных системах координат они двигаются либо из прошлого в будущее, либо из будущего в прошлое. Но со скоростью – больше скорости света. Всё это возможно, но это не обнаружено. Во-первых, надо четко сказать, что теория это допускает, то есть, нет запрета на это. Но нет никаких экспериментальных данных о том, что это есть в природе. А, во-вторых, переход из обычного вещества в тахионное вещество или из обычного вещества в вещество, живущее в обратном направлении по времени, может произойти только скачком. Надо преодолеть световой барьер. Так же, как для авиации был звуковой барьер (он-то преодолен), в теоретической физике сейчас есть световой барьер. И, вроде бы, в современных представлениях, его преодолеть принципиально невозможно. Ну, по крайней мере – макроскопическому телу. </p><p>Невозможно предположить синхронный скачок миллиардов частиц, да еще без разрушения связывающей их структуры. Частица должна умереть и родиться с противоположным направлением движения. Такие теории есть. В квантовой электродинамике, например, предполагается, что античастица по отношению к частице – это как раз объект, который движется в обратную сторону по времени. Это та же частица, но родившаяся с обратным направлением движения. Проверить это очень трудно. Это объекты, коротко живущие. Но в любом случае, мы-то их воспринимаем как объекты, живущие в нашем направлении времени и просто обладающие некоторыми зеркальными свойствами. А.Г. Давайте себе представим, что мы не спутник запустили на "черную дыру", а, скажем, космическую станцию, где есть наблюдатель. Где есть кто-то, для кого существует субъективное представление о времени и кто может делать мгновенные выводы из наблюдаемого. Поскольку в момент падения время для него замедляется, что он наблюдает вне пределов той системы координат, в которую он в данный момент погружен? То есть, грубо говоря, что для него происходит со Вселенной? А.К. Во-первых, он видит очень сильное синее смещение из иллюминатора своего корабля. Он видит, что Вселенная для него становится вначале синей, потом фиолетовой, потом рентгеновской. То есть, глазами он ее уже не видит. Он может видеть ее только в рентгеновский телескоп. И частота процессов, происходящих в той части Вселенной, которая не падает на "черную дыру", для него стремится к бесконечности. То есть, в принципе, при неограниченном приближении к "черной дыре" можно получить как угодно высокий по частоте спектр звезд, допустим, наблюдаемых. Это первое, что он видит. Ну, а второе, это, конечно, кривизна пространства. Здесь мнения современных физиков расходятся, потому что не совсем понятно, как квантовая механика согласуется с теорией относительности. Это вопрос – релятивистской квантовой механики пока нет.</p><p>Релятивистская теория – макроскопическая, она вообще создана для больших тел. В сущности, общая теория относительности создана для космических расстояний. А квантовая механика создана для наблюдения очень нестабильных микроскопических объектов, и даже математически там очень существенная разница. Разного типа операторы используются для моделирования измерения. Так это проявляется даже на уровне математики. А фактически, вопрос вот в чем заключается. </p><p>Когда наблюдатель попадает под мощное гравитационное поле, неважно, черная дыра или не черная дыра, он попадает в зону высокого гравитационного поля, и там происходит очень сильное искажение пространственно-временных масштабов. О времени мы сейчас поговорили, а меняются еще и пространственные масштабы. И пространственные расстояния меняются, а, скажем, радиусы взаимодействия частиц при этом не меняются. По крайней мере, квантовая механика не дает никаких прогнозов, как изменятся радиусы взаимодействия частиц. При тех деформациях, которые следует ожидать, в сильных гравитационных полях, в сущности, обычные поля – электрические, электромагнитные, слабые или сильные взаимодействия, – они просто должны разорваться. Эти деформации должны отодвинуть частицы на такие расстояния, что они перестанут взаимодействовать. И те кванты, с помощью которых они взаимодействовали, просто не будут долетать. Они, вылетев из одной частицы, уже не будут попадать в другую частицу. Это поле их отклонит, они улетят куда-то. </p><p>Поэтому здесь, конечно, все не так просто. Этот наблюдатель, которого мы нарисовали, он идеализирован, конечно. Мы проигнорировали его химическую природу, мы поместили его в мир, где, вообще говоря, может быть, просто не будут происходить те физические взаимодействия, которые нужны для его функционирования. Достаточно сказать, что простые частицы, которые падают в зону сильной гравитации, очень сильно излучают. Там возникает эффект типа черенковского свечения, и это очень сильное излучение, которого нет в обычном для нас мире. При этом, излучение и его кванты существуют во всех системах координат. Поэтому там явно идет какая-то другая жизнь, какой-то другой мир, который мы сегодня толком, в общем-то, описывать не умеем. То есть отдельно существует квантовая механика, для малых расстояний и, я бы сказал, для огромных установок, которые изучают очень маленькие объекты. И наоборот, существует релятивистская теория, которая описывает крохотную, пренебрежимо малую установку в гигантском космосе. И у них совершенно разные законы у этих механик. Единой механики, объединяющей и то и другое, не существует. </p><p>Ну, например, оператора времени в квантовой механике нет вообще, потому что все измерения в квантовой механике осуществляются путем повторения. Чтобы измерить какой-то объект, его надо предъявить много раз и взять среднюю характеристику. Момент времени мы не можем предъявить много раз. Поэтому оператор времени не является квантово-механическим, и время в квантовую механику вводится из макроскопических теорий. Есть классические модификации квантовой механики под Ньютона, Галилея. А есть релятивистские модификации. Но, в любом случае, внутри квантовой механики время существует как внешний параметр, который получен извне. Можно даже как-то, на семантическом уровне, сказать тут какие-то слова, что это время тех самых макроскопических установок. Гигантские установки: ускорители, реакторы – это массивные тела, и время квантовых процессов – это время этих установок. Можно так сказать. </p><p>Но это будут слова, это будет философия, натурфилософия, а математического аппарата, который связывал бы такое внешнее время с внутренним временем квантовой механики, не существует. Это – одна из проблем. Вообще, в квантовой механике очень тяжело с понятием системы координат, поскольку не совсем понятна система отсчета, с чем связать в квантовой механике наблюдателя. Система отсчета берется из микроскопических тел, потому что там есть какая-то определенность. Можно указать начало отсчета, скорость движения, там есть все эти необходимые параметры. А квантовая механика не располагает теми телами, на которые можно было бы посадить наблюдателя. И такая трудность есть.А.Г. Возвращаясь к релятивистской теории. Стрела времени, находящаяся в полете, определяет траекторию этого полета раз и навсегда, неизменно. То есть, грубо говоря, будущее столь же реально, сколь и прошлое, оно уже существует и оно неизменно. Так ли это в релятивистской теории?А.Л. Дело даже не в том, релятивистская у нас теория или нет. Действительно, существует точка зрения на мир как на некое статическое образование. Мир, в котором и прошлое, и настоящее, и будущее уже существуют одновременно. Именно эту картину нам дает четырехмерный мир Минковского. И то, что мы называем временем, – это иллюзия. Иллюзия в том смысле, что время возникает вместе с лучом сознания. Когда луч сознания высвечивает ту или другую точку нашей мировой линии, затем высвечивает следующую и следующую, вот тогда возникает время. А весь мир, тем не менее, статичен. Вот это и называется статической концепцией времени. А течение времени – это свойство сознания, скользящего по миру. Но статическая концепция – всего-навсего один из подходов. Есть противоположная – динамическая концепция, согласно которой существует только настоящее, прошлого уже нет, будущего еще нет. И природа времени кроется в процессе, который называется становлением – возникновением настоящего из будущего и уходом настоящего в прошлое. </p><p>Наряду с такими двумя концепциями можно назвать еще несколько подходов ко времени. В частности, это упоминавшаяся уже субстанциональная трактовка, когда время есть некая сущность, возможно, существующая в мире, но пока недоступная нашим экспериментальным технологиям. И недоступная, может быть, потому, что пока нашей цивилизацией не набрана необходимая для регистрации субстанций "сумма технологий". Не так давно, около 100 лет назад авторитетные ученые спорили, есть ли на самом деле атомы, позже спорили, существуют ли гены. Может быть, настанут дни, когда не нужно будет спорить о реальности генерирующих субстанциональных потоков, поскольку мы научимся предъявлять их в убедительных экспериментах. В противовес субстанциональной концепции, существует концепция реляционная, которая не предоставляет времени самостоятельного бытийного статуса, не связывает время с какими-то гипотетическими потоками или гипотетическими субстанциями, а выводит время из свойств реальной материи и известных частиц. Этими частицами могут быть и нуклоны, могут быть и планеты, и звезды, и галактики. </p><p>Реляционная концепция говорит о том, что реальные объекты изменяются, и эти изменения следует описывать с помощью отношений между самими объектами. Эти отношения чаще всего связаны с механическим движением или каким-то обобщенным движением, описывающим изменения. В реляционных гипотезах время не имеет своего "текущего" референта в природе. Время оказывается конструктом в нашем описании наблюдаемых движений для привычных объектов. Таким образом, реляционная концепция также позволяет моделировать понятие времени. Наши коллеги, Владимир Владимирович Аристов, Юрий Сергеевич Владимиров, строят конструкции времени, которые они относят к области реляционных, а не субстанциональных. Сам я думаю, что реляционный и субстанциональный подходы скорее дополняют друг друга, чем противопоставлены друг другу. Потому что, как нет реляции без субстанции, как нет отношений без объектов, так нет и объектов без отношений между ними, в частности, без движений и без изменений.А.Г. И все-таки, какова роль субъективного наблюдателя, и не является ли время всего-навсего философской концепцией, нашим ощущением смертности и разрушения, исчезновения, а на самом деле нет никакого времени? Помимо наблюдателя нашей системы, никакого времени нет.А.Л. Во многом ответ на такой вопрос зависит оттого, что мы с вами согласимся или не согласимся называть временем. Я исхожу из того, что время – это изменчивость Мира, и убежден, что изменчивости подвержен не только я и мои соплеменники по человеческому роду, но изменчивости подвержено все в мире, начиная со Вселенной и кончая песчинками, атомами, электронами. Если понимать время так, то оно, конечно, становится свойством далеко не только живой природы и не только воспринимающего сознания. Если ко времени относиться по-другому, то есть принять, что изменения, процессы – это не время, а время – это наш способ описания или мышления о процессах, тогда, конечно, время из феномена становится ноуменом, то есть продуктом человеческого разума. Но, боюсь, что это переопределение происходит только за счет изменения терминологии. А.К. И все-таки очень интересен в этом плане, в плане вашего вопроса, такой аспект. Вот есть субъективное время, есть мое субъективное время, есть ваше субъективное время, у каждого телезрителя свое субъективное время. И все-таки мы как-то все вместе более или менее понимаем, о чем мы говорим. То есть, есть какое-то ощущение еще одного времени, которое воспринимается обществом. Ну, время страны, допустим, или время человечества. Это, видимо, не просто понятийное явление. Наверное, в нас заложено какое-то ощущение коллективной синхронизации. Так сказать, в каждой особи. Это, наверное, еще на животном уровне происходило – не на человеческом, а на дочеловеческом. Когда особь, допустим, в обезьяньем стаде (если мы действительно от них произошли), синхронизировала себя со всеми остальными особями. Нужно было как-то находить "по координате времени" общий язык. И, по-моему, в нас это есть. В нас есть какое-то чувство общего времени, кроме чувства субъективного времени. Я сейчас говорю на уровне субъективных ощущений, а не уровне позитивной науки.А.Л. Я в своих предположениях, мне кажется, захожу еще дальше. Для меня, в некотором смысле, "время и жизнь" и "время и сознание" – синонимы. Это связано с моими представлениями о времени как о потоках, которые пронизывают Вселенную, и с тем, что таких потоков на самом деле несколько. Источники или истоки генерирующих потоков – сингулярности, через которые потоки "проникают" в нашу Вселенную – моделируют заряды не только физических взаимодействий. Для меня организм – это тоже заряд. Заряд, через который в наш мир входит определенная субстанция и порождает течение биологического времени. Также в моих гипотезах существует субстанция, которая порождает психику. Поэтому есть живые организмы, обладающие психикой и живые организмы, которые психикой не обладают в зависимости оттого, являются ли они источником определенных глубинных потоков. Точно так же, как среди элементарных частиц могут быть частицы, которые участвуют и в электромагнитном, и, скажем, в сильном взаимодействии, а могут быть такие, которые участвуют только в одном из этих взаимодействий. Ясно, что названная точка зрения достаточно спекулятивна, и следовало бы как-то объяснить, почему неизбежны подобные спекуляции...А.Г. После 18 лет работы семинара...А.Л. Я считаю результатом работы семинара не только конкретные модели и теории, но и изменение парадигмы современного естествознания.

gordon: Пульсирующие ледники

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Котляков Владимир Михайлович– академик РАН</li><li>Десинов Лев Васильевич– кандидат географических наук</li></ul><p><strong>Александр Гордон: ...когда это произошло, и кто впервые сделал такое наблюдение?Лев Десинов: В какой-то момент надо будет выйти на космический мониторинг, потому что ледники пульсирующие в значительной степени мы сейчас изучаем дистанционно, у нас нет возможности изучать их по-другому, и мы сейчас все больше и больше информацию получаем уже оттуда.А.Г. Поскольку мы уже в эфире, давайте начнем. Пожалуйста.Владимир Котляков: Ледники – это феномен удивительный, это вроде хрупкое тело, когда он лежит, но на самом деле лед ведь течет. Стоит ему набрать определенную массу, как он начинает течь. Ледники, собственно, это большие ледяные тела, которые движутся, текут и движутся совершенно закономерно. Где-то наверху идет накопление льда, снег падает, и образуется масса льда, и лед начинает по рельефу течь вниз. Так, собственно, о ледниках думали много-много лет, может быть, даже веков.А.Г. Как о ледяных реках.В.К. Да, ледяные реки, так их называли, и текут они вниз по долине. Но уже в наше время, конкретно на моей памяти, в 60-х годах прошлого столетия, то есть всего-навсего меньше 50-ти лет назад, однажды, в 63-ем году, на Памире ледник Медвежий, так его называют, вдруг внезапно начал продвигаться вниз – большой ледник, километров 11 длиной вдруг начал продвигаться вниз. Подпрудил озеро, огромное озеро за ним образовалось, и это озеро, естественно, прорвало плотину, поскольку это была ледяная плотина, а не каменная, снесло поселок – в общем, все было, как в таких случаях происходит. И тогда мы впервые обратили внимание на эти ледники, и наш институт – Институт географии Академии Наук Советского Союза, послал туда экспедицию...А.Г. То есть он вел себя не так, как положено леднику?В.К. Да. Тогда, собственно, и возникло это название – "пульсирующие ледники". По-английски немножко по-другому они называются – "сердж", резкий всплеск. Тогда мы их начали изучать. </p><p>Прошло всего 6 лет, и случились новые события на Кавказе. Около города Орджоникидзе маленький трехкилометровый ледник также вдруг начал продвигаться вперед и прошел 4 километра, в то время как длина его была всего 3 до этого. То есть удлинил себя в два раза. Это я видел собственными глазами, потому что была образована правительственная комиссия на уровне Российской Федерации, и меня включили в эту комиссию. Л.Д. Произошло это с начала октября по 10 января.А.Г. То есть за три месяца он проделал...В.К. Да, за три месяца он прошел примерно 4 километра. И все очень боялись, что с него пойдет сель. Но, слава Богу, этого не случилось тогда. По-видимому, потому что это была зима, было мало воды, и он, продвинувшись, остановился.Л.Д. Владимир Михайлович, но боялись-то потому, что в 1902 году он продвинулся по-настоящему, с селем, унес 30 человеческих жизней. То есть это все была очень серьезная история.В.К. Интересно, что когда мы начали понимать, что это за ледники, выяснилось, что их не так уж и мало. В Тирольском музее нашлись картины, написанные в ХУП или в начале ХУШ века, где эти ледники были изображены, потому что в Альпах такие ледники тоже есть. Выяснилось, что это ледники можно найти по всему миру, не в каждых горах, но в большинстве. Они очень резко отличаются от обычных ледников. </p><p>Тут возникает первый и главный вопрос: а можно ли их различить? Мы нашли разные признаки. Лев Васильевич, может, даже об этом расскажет, их очень много, признаков внешних. Мы в 80-ом году имели программу наблюдения их с орбитальной станции "Салют-6", Лев Васильевич был главным организатором этих работ. Космонавты, летавшие там, наблюдали ледники из космоса, тогда уже мы знали визуальные признаки этих ледников.Л.Д. Дело в том, что космический полет позволяет видеть много ледников сразу. И не обязательно даже на территории Советского Союза – в то время или сейчас Российской Федерации, но и на сопредельных территориях, и сравнивать разные признаки. А для того чтобы понять, какие же признаки отличают ледник пульсирующий от обычного, как раз и важно видеть много объектов. </p><p>В те годы, 70-80-е годы, было установлено, что у пульсирующего ледника нижняя часть – ледниковый язык – имеет некую выпуклую форму, а у ледника обычного, как правило, – вогнутый профиль поперечного сечения. И когда ледник активизируется, мы видим, как сверху лед подтекает в нижнюю зону, как ледник постепенно становится все более и более выпуклым. Сверху идут так называемые волны активизации. Это такие дугообразные волны вспучивания, скажем так, которые своей выпуклостью обращены вниз по долине, они медленно продвигаются, одна волна настигает другую волну, они порой сближаются. Существует масса и других признаков. Поэтому как раз орбитальный обзор позволял на огромных территориях, скажем, Памира и Каракорума сразу, выявлять несколько пульсирующих ледников. Но, конечно, все-таки основное – это приход наземной группы исследователей, и конкретный ледник уже изучался детально на Земле.В.К. Мы оказались пионерами в этой проблеме, но спустя буквально несколько лет весь научный мир заинтересовался ими, потому что таких ледников довольно много, скажем, и на Аляске. Я однажды летел на Аляске на маленьком самолетике со своим приятелем, американцем-ученым, и мы с ним открыли новый подобный ледник. Действительно, все его признаки были налицо... А это был ледник километров 30 длиной, большущий ледник, там громадные ледники. На Аляске, на Шпицбергене, на Памире, в Каракоруме, это наиболее яркие горные системы...Л.Д. Очень интересны ледники пульсирующие в Исландии, потому что там вулканизм, и это все проявляется на базе вулканизма.В.К. Дальше возникает вопрос, почему один ледник пульсирующий, а другой не пульсирующий? Современные представления таковы, что пульсирующий ледник имеет какие-то препятствия для своего движения, разного рода препятствия. То есть он накапливает массу и отдать ее не может. Нормальный ледник накапливает и отдает, накапливает и отдает, у него как бы баланс сохраняется, иногда немножко больше, тогда ледник растет, иногда немножко меньше, тогда он отступает. Сейчас большинство ледников отступает, потому что климат в эти более теплый. Но пульсирующие ледники набирают массу, и когда какой-то предел наступает, что-то внутри меняется, меняется механизм движения.А.Г. Есть какой-то спусковой механизм.В.К. Да, меняется механизм движения, и он резко выбрасывает массу вниз по рельефу. В этот момент меняются какие-то свойства материи, меняется то, что научным языком называется реологические свойства. То есть он получает возможность быстро течь, разламывается, в нем появляется вода, смазка какая-то, и он выбрасывает массу. Выбросив ее, он становится меньше, и тогда замирает, как бы утихает, начинается период нового накопления массы. Но это в идеале, а на самом деле... </p><p>И это происходит регулярно. Мы заметили, что пульсации ледника Медвежий на Памире, который я упомянул, происходили – в те годы – примерно через 10-13 лет. Одну мы сумели предсказать – в 73-м году. Мы тогда вели там регулярные наблюдения и сказали, что в 73-ем году он достиг такого состояния, что в ближайшие месяцы должна случиться следующая подвижка. И она случилась примерно в то время, о котором мы говорили. Это помогло местным властям, это Ванчская долина, не очень населенная, но все-таки там люди живут, наше предсказание позволило по крайней мере избежать жертв, это уже точно.Л.Д. И в 87-ом году мы ведь тоже сказали, что через один-два года ледник снова придет в движение. И за два года до подвижки 89-го года тоже было ясно, что ледник Медвежий активизируется. Последняя пульсация, которая завершилась в том году, тоже была обнаружена. То есть на этом объекте есть достаточно признаков, которые позволяют прогнозировать его поведение.А.Г. Такая периодичность говорит не в пользу, если я правильно понял, первой гипотезы, которая была высказана, а именно, сейсмической гипотезы объяснения поведения таких ледников.В.К. Один из районов, которые я упомянул, Аляска – это очень сейсмический район, там действительно бывают сильные и большие землетрясения. Так вот, нет прямой связи между землетрясениями и подвижками ледников. Пусть случается землетрясение, но ледник живет своей жизнью, и если он не готов еще, то ничего не произойдет. Землетрясение может быть пусковым механизмом, наверное, но ледник должен быть уже готов, он должен достигнуть такой стадии, когда он может двинуться. Если время будет, мы к этому вернемся уже на материале сегодняшних событий. Но пока я говорю о том, что бывает в принципе. </p><p>Эта периодичность, очевидно, довольно всеобщая, хотя само явление принимает разный характер. Лев Васильевич говорил, что во льду появляются волны, он постепенно начинает двигаться, сначала понемножку, потом резко, весь разбивается на блоки, целое месиво льда движется вперед. Но бывали и другие случаи. На том же Памире и на Кавказе бывает так, что появляется сель, то есть появляется много воды, и возникает, как мы говорим, водно-ледовый каменный сель, когда ледник, по существу, разламывается и уносится с водой. Такое случилось на Колке в 1902-ом году, и схожий случай был буквально в наши дни, совсем недавно. </p><p>Тут могут быть разные причины и разные обстоятельства. Главное, как я это понимаю, – это вода, без воды это невозможно. То есть подвижка возможна, но для резкого выброса льда все-таки нужна вода, потому что вода меняет условия, меняет физику, меняет механику. </p><p>Конечно, опасность возникает, как на Медвежьем, и от подпруживания. Понимаете, ледник идет вниз по долине, справа приток реки. Ледник перегородил долину. А что такое ледник? Ледник – это лед толщиной в несколько сотен метров. Получается плотина...А.Г. Вода начинает подниматься...В.К. Плотина запирает долину, моментально появляется озеро, потому что воде некуда деваться. Но лед-то легче воды, и ледяная плотина не может быть прочной. Вода, конечно, дырочку найдет. И постепенно-постепенно вода до какого-то уровня доходит, потом прорывается. А если идет прорыв, то возникает совершенно колоссальный объем воды, иногда просто миллионы кубометров воды.А.Г. Я читал, что чуть ли не тот же Медвежий создал озеро глубиной 80 метров.В.К. Совершенно верно. Уровень озера поднялся на несколько десятков метров, затем оно дважды в одно лето прорывалось, давая сель, там и поселок геологов был снесен, в первом случае. Л.Д. А вот представьте, какое событие в том году могло бы быть. Если говорить о том же Медвежьем, то его подвижка, шедшая около года и завершившаяся в прошлом году, была страшна вот чем. Дело в том, что если бы такое озеро было образовано в эти годы, то оно угрожало бы не только долине реки Ванч, о которой Владимир Михайлович говорит. Вспомним, что река Ванч попадает в Пяндж, а Пяндж – река пограничная, и два года назад, когда подвижка ледника началась, еще не завершились события в Афганистане. В долине реки Пяндж, на островах, сидели тысячи людей. То есть армия Дустума цеплялась за последние метры берега, а женщины, дети, старики, скарб – все это было на островах в Пяндже. Если бы такое озеро прорвалось, все было бы сметено. И второе, что нас волновало не меньше: вспомним, что, в конце концов, границу охраняют российские пограничные войска. Но, слава Богу, ледник не перекрыл долину, впервые ледник Медвежий не запер долину. Правда, тогда мы находились в тесной связи с нашими пограничными войсками, мы регулярно сообщали им о том, есть угроза или нет. То есть это на самом деле серьезные практические задачи.В.К. Но опять возникает научный вопрос: а связаны ли эти подвижки с климатом?Л.Д. Да, вода-то откуда-то должна появляться.В.К. Как это связано с климатом? По нашим представлениям, прямой связи с климатом здесь, конечно, никакой нет, тут главное значение имеют события в самом леднике.А.Г. То есть, жаркое лето или не жаркое.В.К. Допустим, климат меняется, как сейчас, идет потепление, значит, ледники уменьшаются в размерах, отступают. И меняя свою конфигурацию, они действительно могут стать менее опасными. Вот очень известный случай – в середине Х1Х века русские пришли на Кавказ и начали строить Военно-грузинскую дорогу. В первые годы, когда ее уже построили, она для колесного транспорта уже годилась, она несколько раз перекрывалась ледником. Ледник Девдорак несколько раз вылезал на Военно-грузинскую дорогу и устраивал всякие неприятности. А в начале ХХ века все кончилось, и ледник Девдорак, собственно, сейчас перестал быть в этом смысле опасным. Это, как мне представляется, связано с каким-то общим процессом, он уменьшился в размерах, и условия его уже изменились.А.Г. То есть он перестал быть пульсирующим ледником?В.К. Перестал быть опасно пульсирующим. То есть какие-то периодические процессы в нем происходят, но это не вызывает катастрофических изменений.А.Г. А известны случаи, когда ледник, классифицированный как обычный ледник, вдруг становился пульсирующим?Л.Д. Здесь немножко все интереснее. Хоть мы и ведем наблюдения 30 лет, у нас нет хорошей статистики по всем ледникам мира, и даже по ледникам Советского Союза или, скажем, ледникам Кавказа. Поэтому мы периодически переводим отдельные нормальные ледники в разряд пульсирующих, когда видим активизацию ледника, когда видим набор неких признаков. И, вообще говоря, когда делаются карты ледниковых пульсаций, то мы привыкли считать, что ледник пульсирующий тогда, когда мы имеем, по крайней мере, два сообщения о том, что событие было...А.Г. От достоверного свидетеля.Л.Д. Да, когда это надежное свидетельство. Но если мы видим, что ледник только один раз проявил себя в таком направлении, мы на карте его обозначаем как условно пульсирующий. А когда видим только признаки отдельных пульсаций, то задумываемся. Поэтому если бы мы имели тысячелетнее наблюдение над ледниками, то могли бы перевести ледник в нормальный или пульсирующий. Хотя информации много, но недостаточно, чтобы так рассуждать. </p><p>Хотя, конечно, бывают случаи очевидные, когда ледник, казавшийся нормальным, вдруг становился пульсирующим. Простой пример. На Памире есть известнейший ледник Фортамбек, там сотни альпинистов ежегодно совершают восхождение на гору Пик коммунизма. Там стоит лагерь, где действительно высаживаются сотни людей каждый год, и этот ледник очень хорошо изучен. И вдруг в 89-ом году этот ледник наступил на много сотен метров, чего никто никогда не предполагал. Хотя, конечно, когда смотришь следы в долине, все те следы, что он оставляет от своей жизнедеятельности, видно, что и раньше такие события были. Поэтому, определяя – пульсирующий ледник или нет, нужно не просто смотреть на ледник, а нужно смотреть еще и на те следы, которые он оставляет в долине. Реконструируя по этим следам события прошлого, тоже можно многие ледники условно отнести к разряду пульсирующих. То есть, вообще говоря, очень много признаков существует не только на самом леднике.</p><p>И еще я хотел бы в отношении главного признака ледника пульсирующего. У ледника пульсирующего, кроме того что осложнен отток, все-таки в балансе массы приходная часть всегда превышает расходную. В этой бухгалтерии ежегодный приход вещества стабильно превышает расход.А.Г. То есть, происходит накопление.Л.Д. Конечно. И если год за годом это происходит, то накапливается избыточная, критическая порция льда, и она за счет одной только силы тяжести обязана сместиться вниз. Тут уже надо смотреть на то, о чем Владимир Михайлович говорил: есть возможность простого оттока или нет возможности простого оттока.А.Г. То есть, равномерно это смещение или нет.Л.Д. Конечно. Причем эти препятствия для оттока бывают разными. Ледник Медвежий все-таки залегает в прямой долине, там оттоку препятствует фактически его собственный язык и некая особенность ложа. А вот у Колки, у нее все совсем плохо. Здесь оттоку препятствует резкий поворот на 60 градусов. Леднику трудно вообще преодолеть этот поворот. И еще ледник входит в очень тесную буквально щель, в V-образный каньон, там ему тоже трудно протиснуться. У каждого ледника своя причина затруднения оттока. Но это один из двух главных признаков – плюс все-таки превышение приходной части над расходной в бухгалтерии.А.Г. Давайте вернемся к воде. Откуда вода берется для того, чтобы сделать возможной эту резкую подвижку?В.К. Вода в леднике есть всегда. У нас есть такое понятие – теплый ледник и холодный ледник. Теплый – когда его температура равна примерно нулю градусов по всей массе, таких ледников довольно много. А холодный – когда у него температура отрицательная. Но даже в холодном леднике всегда присутствует жидкая вода, даже зимой. Откуда она берется? Источников много, и самый простой – из атмосферы, идут дожди, тает снег, и он насыщает лед. Ледник – это не сплошное тело льда, он всегда с кавернами, с трещинами, с какими-то пустыми полостями, которые заполняются водой. Я однажды был внутри ледника, в такой полости, я просто туда зашел...Л.Д. А я падал в трещину, пряма вниз в озеро.В.К. Вода попадает туда летом или осенью, и остается там и зимой, не замерзает, там не хватает холода, чтобы ее заморозить. С другой стороны, ледник движется, идет все время его трение о борта долины, трение слоев – слой более плотного льда, слой менее плотного. Это трение всегда идет с выделением тепла и набирается вода. </p><p>Если вернуться к самому злободневному, к событиям на Колке, то наше представление заключается в том, что такое грандиозное катастрофическое событие произошло потому, в частности, – и может быть, даже в значительной степени, – потому что там было очень много воды. </p><p>Давайте вспомним последние годы на юге России. Все эти наводнения на Кубани, которые были и в прошлом, и в позапрошлом году. Последние три года на юге России были очень снежными, очень мокрыми, то есть осадков выпадало больше, чем в среднем, чем должно было быть в норме. Кроме того, прошлое лето было очень и очень дождливым. Проезжая позавчера буквально по соседней долине в районе Владикавказа, я видел неприятности, которые вызвала не эта катастрофа, а то, что произошло за полтора месяца до этого, в июле. В июле, еще до этой подвижки, по рекам прошли грандиозные сели, которые были вызваны тем, что было очень много воды. Эта вода сыграла очень важную роль в этом грандиозном совершенно событии, катастрофическом. </p><p>Мы сейчас подошли к проблеме Колки, и я тут хотел бы специально несколько слов сказать, потому что здесь существует много точек зрения. Такое событие, такое трагическое событие, неизбежно вызывает много попыток понять, как же это могло произойти. Наше представление состоит в том, что Колка – это обычный пульсирующий ледник. И он неизбежно должен давать регулярно такие всплески. Колка их до этого давал редко, но регулярно. Нам известна подвижка 1969-го года – то есть совсем недавно, которую мы уже наблюдали, 8 лет после этого там работала целая экспедиция. До этого известна в литературе подвижка 1902-го года, тоже жуткая... Есть признаки и даже какие-то остатки этого события в памяти людей, что такое было в 1830-х годах. Значит, раз примерно в 60-70 лет. И это происходит потому, что за 60-70 лет этот маленький ледник набирает примерно 100 лишних миллионов кубических метров льда. Эти 100 миллионов дают тот самый толчок, который и является началом такой подвижки.А.Г. Но из того, что вы рассказали, я понял, что хотя в геологическом времени эти изменения катастрофические, все-таки в реальном времени они происходят довольно долго – 4 километра, скажем, за 5 месяцев – 200 метров в месяц. Здесь же события произошли в считанные секунды.Л.Д. Во-первых, это бывает по-разному. Ведь что значит подвижка ледника? Ледник порой продвигается всего на несколько метров, а мы говорим, что это подвижка. Бывает, он продвигается на километры. А бывают подвижки, которые завершаются внутри контура, то есть ледник не покидает своих границ, однако же все признаки пульсации есть, масса льда из области оттока сверху перетекает на ледниковый язык, и все на этом успокаивается. То есть дистанции прохождения льда совершенно разные. </p><p>Но опасно, я возвращаюсь снова к воде, когда воды очень много, это играет решающую роль. Вообще, в ледниках, как я себе представляю, существует в среднем 4 горизонта воды. Существует два верхних ненапорных горизонтах, это в области аккумуляции, наверху, в трещинах, и две напорные области, одна – внутри тела ледника (может быть, там даже два-три горизонта), и еще одна совсем на дне. </p><p>Так вот, на дне слой воды бывает, как правило, всего-навсего один-два миллиметра. Мы говорим, ледник имеет воду на ложе, но это, как правило, один-два миллиметра. Однако же есть условия, и на Колке это было очевидно, которые дают резкое увеличение количества воды, в том числе на ложе и внутри. Какие это условия? Самые простые. Первое. Если давление возрастает, то температура плавления льда понижается. На Колке критическая масса постепенно росла, я готов об этом рассказать подробнее, если потребуется. Но скажу так, что за 6 недель Колка получил дополнительно примерно 15 миллионов тонн вещества в области оттока, давление возросло, и, следовательно, количество воды внутри и на ложе резко увеличилось. </p><p>Вторая причина. Такой ледник, как Колка (или исландские ледники) – это ледники, которые находятся на склонах вулканов. То есть соленость воды и льда там повышенные. А известно, что если соленость льда повышается, то температура плавления льда понижается. И, следовательно, из-за того, что мы имеем не просто дистиллированную воду, а несколько соленую, минерализованную (и мы еще не понимаем, насколько она минерализована), там тоже должно было быть количество воды увеличено – вот еще две очень серьезные порции. А вообще, в нормальном, в обычном леднике воды примерно 0,02 процента. Но те причины, о которых я рассказал, могут повысить количество воды в 10 раз. </p><p>А еще бывают случаи совсем уникальные, и, кстати, на Колке был опять-таки такой случай. Я сам, находясь там через 3-4 дня после катастрофы, совершая облеты на вертолете, видел, как с северной стены Казбек-Джимарайского горного узла, на котором находится Колка, идут просто потоки воды. То есть склон был перегрет, а это очень мощный стимул подачи дополнительной воды. И такое еще может быть.А.Г. То есть из-под ледника продолжала выходить вода после...Л.Д. На ложе ледника проникала вода со склона. Это тоже очень важный фактор.В.К. Картина оказывается много сложнее, чем просто картина пульсирующего ледника. В случае с Колкой очень важно сказать, что Казбек – это вулкан, причем вулкан не потухший, а уснувший.Л.Д. Три тысячи лет дремлющий.В.К. То есть он вполне готов проснуться, и все признаки вулканизма там существуют. Скажем, когда случилось это событие, и ледник уже выбросился из ложа, я просто очевидец того, что там оказалось облако сероводорода, то есть оголились какие-то каналы, по которым начали выходить вулканические газы. Это признак того, что Колка находится в очень необычном месте. И это тоже могло сыграть свою роль. </p><p>Все дело в том, что, говоря геологически, Кавказ – это очень молодая горная страна, он так быстро поднимается, в смысле геологическом быстро, что реки пропиливают щели, они не успевают разработать горы, которые поднимаются быстрее. Поэтому там, где речные долины – очень узкие щели, это признак того, что горы поднимаются быстро. Там существуют зоны так называемых разломов. Как раз Колка лежит по существу в этой сетке разломов. Разлом – это живая территория, где идет тектоническое движение. Вполне вероятно, что сейчас происходит некое обострение этих процессов. Лев Васильевич это наблюдал, он, может быть, об этом еще скажет, Там на ледник сверху, со склона, падали огромные массы льда и снега, которые и увеличили очень быстро массу льда. </p><p>Мы, конечно, предполагали, что такая подвижка у Колки может быть, и она в книгах, которые мы издали в 83-ем году, даже описана. Там есть один абзац, где описано то, что произошло сейчас. Мы предполагали, что это может быть, но через 50-60 лет от предыдущего, от 70-го года. Но что-то произошло раньше. И то, что произошло, вполне может быть связано и с некоторым обострением вулканической деятельности в этом районе, даже сейсмоактивности. </p><p>Но мы утверждаем, и тут мы расходимся с другими, что если бы этот ледник не был готов к подвижке, то его бы ничего не сдвинуло, ни вулкан, ни землетрясение. Он уже был готов, а готов был потому, что на нем накопилась огромная масса и твердого вещества (имея в виду и лед, и горную породу) и большая масса воды внутри ледника. </p><p>Ведь что произошло, как я понимаю? Внезапно, очень быстро, за какие-то считанные минуты он буквально выбросился из своего ложа и прошел путь в 15 километров до ближайшей теснины, куда его уже не пустила щель, о которой я говорил. Скорость его никто не измерял, естественно, но по некоторым признакам она могла достигать 200 километров в час. С такой скоростью неслась масса льда, камней и воды. А раз такая скорость, то еще была и воздушная волна, вне сомнения. Это волна может показаться просто воздухом, но на самом деле ее сила такова, что никакой бульдозер, никакой паровоз не может устоять на месте. Таких случаев было очень много, когда очень тяжелые механизмы просто скручивало.Л.Д. А при движении с огромной скоростью ледник дополнительно продуцирует большое количество воды. В.К. Кроме того, он же срывает массу со склонов. И поэтому его масса очень быстро растет.Л.Д. Важно еще добавить, что если говорить о воде, то с водой прямо связано и строение ложа ледника. Дело в том, что чаще всего у ледника ложе слабо наклонное, не имеющее никаких особых перегибов. А у ледника Колка мы обнаруживаем ригель, то есть некое повышение...А.Г. То есть трамплин такой?Л.Д. Да. И если на ложе ледника образуется вода, то можно говорить о том, что эта вода не просто смазывает ложе ледника, а образует некое озеро, может быть, глубиной миллиметр или сантиметр, мы сейчас не знаем. Само строение ложа, некая полууглубленная чаша, дает возможность накопиться там большому количеству воды – это серьезно.</p><p>Владимир Михайлович призвал меня добавить несколько слов об этой сейсмике. Дело в том, что Колка находится в Казбек-Джимарайском горном узле, где два широтных и два меридианных разлома, все они перпендикулярны один другому, и выделяют этот блок именно как единый блок. И важно сообщить, что вся та порода, лед и каменный материал, который обрушился на Колку, это все падало точно по линии разлома – ни метр вправо, ни метр влево. Как мы видим, разлом проходит через плечо горы, так точно по линии разлома и падение было. </p><p>Но здесь совершенно точно нужно сказать, что это обрушение породы льда и материала произошло не в день катастрофы, не сиюминутный обвал льда выбил Колку из ложа. Мы документально установили сейчас, что это падение породы происходило в течение шести недель, оно началось 14 июля (а катастрофа – 20 сентября) и завершилось примерно 2 сентября. То есть за 18 дней до подвижки все эти 15 миллионов тонн льда и каменного материала уже лежали на Колке, создав ту самую критическую массу. Это очень важно сказать. То есть здесь у нас нет прямой связи с сейсмикой, ледник Колка действительно был подготовлен к подвижке обрушением породы. </p><p>Но в данном случае сейсмические условия, а точнее говоря, такая сложная геодинамика этого района Кавказа, то есть вулканизм плюс сейсмика, позволили Колке накопить критическую массу не за те самые нами ожидаемые 35 лет, а за 6-7 недель. А дальше произошло то, что должно было произойти с любым пульсирующим ледником.В.К. Но случай оказался уникальным, потому что это первый случай, описанный в мировой литературе, когда практически весь ледник, или скажем так, почти весь ледник ушел из своего вместилища. То есть там осталось, конечно, что-то, но практически мы видим совершенно оголенное или почти оголенное ложе ледника, а вся масса льда, все эти 140, по последним подсчетам, миллионов кубометров льда и породы, все это сейчас находится у теснины и медленно тает. Лев Васильевич, по-моему, последний, кто из ученых ходил по этому леднику буквально 5 дней назад, я был рядом позавчера. И мы видим, что вся эта масса льда постепенно тает, оседает, а за ней образуется озеро. Кстати, озеро образовалось буквально в первые же дни, что привело к затоплению половины села Саниба. </p><p>Но это событие дает очень важный урок, урок уже чисто социальный. Все старинные села, которых там довольно много, находятся не ниже, чем на 75 метров над урезом реки. Там и воды нет, люди ходят за водой вниз. Почему?А.Г. И скот пасти тяжело.В.К. Потому что человеческая память держит в уме то, что было здесь, может быть, сотни лет назад. И все строились и жили повыше. А что произошло в последние годы, особенно в последние десятилетия, когда стало чуть легче с нашими законами? Когда люди и за взятки или просто самовольно начали строить там дачи, селиться. Опять же, мы наблюдали наводнение, скажем, на Кубани, и людям что затопило? Затопило не то, что построено было 10 лет назад или десятки лет назад, затопило то, что построено в наше время... Поэтому я, выступая позавчера во Владикавказе на "круглом столе", по этому поводу сказал: мы не можем предсказать это событие, надо сказать, что ученые к этому не готовы...А.Г. Даже при постоянном мониторинге.В.К. Даже при постоянном мониторинге это сделать очень трудно, хотя он все равно нужен, конечно. Но мы можем сделать другое, то, что можем сделать – это составить карту той же, скажем, Северной Осетии, на нее нанести опасные зоны, где строиться совсем нельзя, зоны полуопасные, где строиться можно, но только общественных сооружений не делать, а личные – это уже другое дело, и, наконец, зоны, где, пожалуйста, живи спокойно. Карту, где будет указано – где есть вулканизм, где есть землетрясения, где есть наводнения, – вот это мы можем сделать. </p><p>А дальше нужны нормативные документы, и власти должны следовать этому документу. Кстати, Швейцария – страна горная, где уже веками эти карты существуют, там есть красная зона, синяя зона, белая зона. Красная – нельзя совсем, синяя – только личные постройки, никаких общественных, и белая... Это там закон, понимаете. И так же должно быть и здесь. Это очень важно, мне кажется.Л.Д. Позвольте вернуться еще раз к воде. Дело в том, что на Колке (уж, к сожалению, опять к Колке вернемся) вода проявила себя исключительно интересно. Я, правда, выскажу только субъективно свое мнение. Я действительно был последним на сегодняшний день, кто был на леднике Колка совсем недавно. Там в тыловой зоне обнаружили огромный выплеск льда вверх. То есть лед из тыловой зоны был выброшен на 50-60 метров на левый склон, заброшен очень далеко, и примерно на километр вниз этот лед пронесся. Мои субъективные оценки показывают следующее: когда на Колке образовалась большая критическая масса, и давление возросло, то, конечно, я полагаю, внизу среди этих фумарол и под ледником, резко повысилось давление воды, а следовательно, температура. </p><p>И той мышкой, которая, как в известной истории про деда и бабку, которые никак не могли справиться, а потом мышка все вопросы решила, тем импульсом, который вызвал катастрофу на Колке, был мощный удар воды снизу. Когда поверхность ледника растрескалась... Мы знаем – кстати, это важно сказать, – на ледниках пульсирующих, как бы они ни трескались сверху, все-таки глубина трещины обычно 25-30 метров, иногда 40 метров...А.Г. Несквозная....Л.Д. Несквозная, края в конце концов сходятся. Мы имеем документальные подтверждения и фотографии, как ко 2 сентября, за 18 дней, уже начала трескаться тыловая зона ледника Колка. Когда прочность ледника была на одну треть или четверть нарушена сверху, и ледник стал как бы меньше, тоньше, то есть его деятельный слой, держащий давление снизу, уменьшился, а масса осталась та же, даже увеличилась, то возникли все условия для мощного импульса снизу, и ледник оставил там все эти следы. </p><p>Я пока что не докладывал на Ученом совете института, как это было, и пока не имею поддержки или не поддержки научного совета, но я субъективно считаю, что этой "мышкой" оказался мощный удар давления снизу. Официальная версия на сегодняшний день гласит, что Колка подвинулся потому, что сверху единовременно что-то обрушилось и вывело его из ложа. На самом деле все накопилось постепенно, а потом толчок снизу вызвал катастрофу. Вот такие тоже интересные проявления воды. Я повторю, это субъективное мнение, но, по-моему, это так – опять вода.А.Г. У меня вопрос по поводу того, что обнажился склон, на котором Колка лежал, это представляет интерес для гляциологов? Наверное, это редкое явление?В.К. Это уникальный случай. Л.Д. На этом ложе существуют места, где, скажем, метров 300 в длину и метров 100 по высоте камни уложены как брусчатка на Красной площади. То есть, то, что лежало сверху, все срезано и унесено, все камни, как плиточкой уложены, буквально как брусчатка на Красной площади. Так сработала вода, на этих камнях мощнейшие следы обработки, все отшлифовано водой. Или как напильником все камни выпилены, и все это как на Красной площади уложено.В.К. Все это говорит о том, что как ни величественен человек, но природа, конечно, несравненна по своим возможностям с тем, что можем мы, маленькие пигмеи. Поэтому задача наша не в том, чтобы противостоять ей, а в том, чтобы умно с ней сотрудничать – вот главная идея. Если мы научимся с ней сотрудничать – строить в нужных местах, в нужное время быть в нужных местах и так далее, то...Л.Д. И все-таки нужно создавать службу мониторинга. Нельзя доверяться ситуации, надо создавать хорошую, надежную, четко работающую службу мониторинга.В.К. Конечно, главное – это мониторинг. Причем сейчас это вполне возможно. Конечно, он требует денег, как все вещи, но денег не баснословно больших, главное – это нормальная организация, о чем мы говорили год назад, что Министерство по чрезвычайным ситуациям...

gordon: Гравитационные волны

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Владимир Борисович Брагинский– доктор физико-математических наук, член - корреспондент РАН</li><li>Михаил Васильевич Сажин– доктор физико-математических наук</li></ul><p><strong>Александр Гордон: ...Теории относительности Эйнштейна. Но до сих пор они не зарегистрированными остаются, таким теоретическим предположением.Владимир Брагинский: Нет. А.Г. Не зарегистрированным?Михаил Сажин: Совершенно верно.В.Б. Даже уже Нобелевскую премию дали. А.Г. За что?В.Б. За косвенное обнаружение, проверку формулы Эйнштейна для гравитационного излучения. 93-й год, Нобелевский комитет сработал верно. А.Г. Секунду, секунду, секунду. Вы говорите – нет, вы говорите – да.В.Б. Да. И он прав, и я прав.А.Г. Это к слову о логике, которая используется в описании квантовой механики. И даже в общей теории относительности. А что произойдет при двух сценариях: первый из которых мы сегодня будем обсуждать так или иначе в этой программе. Гравитационные волны – да, будут обнаружены в эксперименте, с помощью столь сложных устройств...В.Б. Непосредственно будут обнаружены.А.Г. Да, непосредственно. В.Б. Нобелевскую премию дали за опосредованное обнаружение.А.Г. А теперь будут непосредственно обнаружены гравитационные волны. И это один сценарий. И второй: при всех попытках гравитационные волны не будут обнаружены, а общая теория относительности зарекомендовала себя как очень точная в предсказаниях наука.В.Б. Да. Она – инженерная дисциплина для слабых гравитационных полей, для высокоточной космической навигации.А.Г. Очень хорошо. Есть вероятность того, что гравитационные волны не будут прямо обнаружены?В.Б. Нет. А.Г. А вы как считаете?М.С. Я считаю, что они будут обнаружены. А.Г. Хорошо, теперь, когда мы об этом договорились, стоит напомнить, что вы сами разделили эфир на две неравные части. У вас 30 минут времени, у вас 20.В.Б. Михаилу Васильевичу – 20?А.Г. Да.В.Б. Значит, можно начинать? Я начну издалека. Сначала был Максвелл. В 1865-м году он обнаружил, что в его уравнении есть волновое решение, и это было опубликовано. И в среде очень небольшого количества физиков это была острая проблема. Гельмгольц своему ассистенту говорил: "Максвелл знает, что есть волновое решение". Должны быть волны. Что это такое? Надо их обнаруживать, если они есть. Хотя оптика была, но никто тогда не знал, что оптическое излучение – это тоже электромагнитные волны. </p><p>В 1888-ом году ассистент Гельмгольца сделал опыты, которые известны довольно давно – опыты с вибратором Герца. Он разряжал банку на диполь (на то, что сейчас стоит на крышах многих домов – антенны дециметрового диапазона) и ухитрился разглядеть маленькую искорку в таком же диполе, в таком же вибраторе, который находился на расстоянии нескольких метров. Потом обнаружил, что можно отразить волну. Это была прямая демонстрация существования гравитационного излучения. Здесь надо сделать некоторый акцент. Акцент принадлежит Лоренцу – великому голландскому физику. Это то поле, которое отрывается от источника и существует сколь угодно долго, но распространяется, если в вакууме, то со скоростью света. Итак, прошло 7 лет после Генриха Герца. Рентген открыл рентгеновские излучения. Те же самые, электромагнитные, только другая длина волны – маленькая. В 10 тысяч раз меньше, чем оптический диапазон. </p><p>Еще несколько лет прошло. Всем стало ясно, что это единый спектр, только частоты разные, длины волн разные. </p><p>Дальше, следующий этап начался с середины первой мировой войны. Эйнштейн публикует общую теорию относительности. В линейном приближении она очень похожа на уравнение Максвелла. Она сложнее, но в линейном приближении похожа. В самом конце войны он публикует еще одну статью, добавочную, уточняющую, о том, что у него тоже есть излучение, которое должно оторваться от источника и существовать независимо, распространяться со скоростью света, только излучаться в обычных условиях оно должно очень слабо. </p><p>Почему? Потому что гравитационные взаимодействия – самые слабые из всех известных. Отношение электрического заряда к массе, скажем, электрона -большое число: пять на десять в семнадцатой. В то время как у всех тел, у всех видов материи, нам известных, это отношение – десять в минус седьмой, не плюс семнадцатой, а минус седьмой. Значит, разница – почти 25 порядков.</p><p>Тем не менее, статическое гравитационное взаимодействие обнаружили. Все тела, во-первых, обладают малыми гравитационными зарядами, гравитационной массой. И они притягиваются, все притягиваются. Нет отталкивания. Вот первый факт. </p><p>Второй факт. У всех тел отношение заряда к массе, гравитационного заряда к инертной массе – одно и то же. Это иногда называют принципом эквивалентности, но по существу – это закон природы, опытный факт. Из этого, к сожалению, следует (это можно по Максвеллу выяснить или по Эйнштейну – одинаково), что дипольного излучения нет, нет плюсов и минусов. А есть квадрополе. Квадрополе – это два диполя, которые мешают друг другу излучаться. Есть такой маленький довесок. </p><p>И тогда стали оценивать – нельзя ли в лаборатории сделать опыт, сделать ускоренное движение масс или две массы вращать? Выяснилось: возьмете тонну, две тонны, раскрутите до такой скорости, что лучшая сталь еле-еле выдерживает, и получите мощность излучения десять в минус тридцатой ватта. Очень мало.</p><p>Через 30 лет после публикации статьи Эйнштейна 18-го года, в 48-ом году, замечательный советский физик Вадим Александрович Фок первым сказал: "Ребята, есть большие массы – астрофизические". Он посчитал, что Юпитер излучает 400 ватт, правда, на очень длинных волнах.</p><p>Потом была пауза. Пауза длилась лет 10. Люди стали медленно и систематически рассматривать, какие источники, подаренные природой, можно обнаружить. </p><p>Много сделали российские физики, советские в то время. Но хороших моделей не было, пока не появилось открытие. Открыли нейтронные звезды. Нейтронная звезда – это звезда, которая имеет массу немножко больше солнечной, но такая плотная, что она уместится в Садовом кольце, если можно будет сделать вокруг нее такой поясочек.</p><p>Если нейтронные звезды могут приближаться друг к другу, сталкиваться, сливаться – это будет потрясающей силы источник. Вот это первая задача, которая возникла и стала более-менее ясно формулироваться в 70-х годах. Параллельно экспериментаторы фантазируют: как же решить такую проблему, найти тот вид излучения, который на бумаге уже давно существует.</p><p>Было еще несколько этапов, я их опущу. С моей точки зрения, ключевым был этап, который связан с изобретением Мейманом лазера. Это мощный источник оптического излучения с очень узкой линией, ее ухитрились еще потом снизить, сузить весьма существенно, и получилось нечто замечательное. Теперь говорят, что лазерная физика – это, собственно, область физики, где лазеры применяются для самых разных надобностей. Сейчас ими (это отклонение от темы) научились ускорять элементарные частицы, используя не гигантские машины, а скромные установки на лабораторном столе. Получают сотни мегавольт на частичку. Это много. Будет больше.</p><p>Но я возвращаюсь к теме. В 62-м году, практически сразу после изобретения лазера... Можно первую картинку? А.Г. Кстати, о лазере, он у вас в руках.В.Б. Да, но я пользуюсь не таким хорошим, каким нужно.</p><p>Два хороших человека, хороших физика, Миша Герценштейн и Слава Пустовойт сказали: "Нужно взять две массы и из них сделать антенну". Почему? Из-за той же квадропольной природы слабо происходит излучение и слабо происходит взаимодействие. Нет плюсов и минусов, значит, только на неоднородности можно поймать, обнаружить прохождение гравитационной волны. А гравитационная волна – это не что иное, как поле неоднородных ускорений. Когда она через вас проходит – она через вас проходит, через Михаила Васильевича, – мы удлиняемся в одном направлении, съеживаемся в другом, а потом в следующий полупериод – наоборот. </p><p>Они сказали, что нужно использовать такую схему. Нежно подвесить два зеркала, лазер, сделать так, чтобы расстояние между зеркалами было таким, чтобы был резонанс целому числу полуволн, здесь поставить детектор. Это очень чувствительная игрушечка для измерения маленьких колебаний. </p><p>Потом примерно 6-7 лет была пауза. И, наконец, с 70-го года в научно-исследовательском технологическом институте и в университете города Глазго, где живут какое-то количество Гордонов, начались опыты в лабораторных условиях. Просто привыкали к зеркалам, привыкали к тому, что это не жесткая конструкция, как обычно в оптике, а они нежно, деликатно подвешены. И вот три человека в 81-м году убедили Национальный фонд научных исследований выделить довольно приличные деньги на то, чтобы сделать прототип антенны, основанный на этом принципе. Это Рон Дривер, Рэй Уайс и Кип Торн. Кип Торн, кстати сказать, член нашей российской Академии Наук, почетный доктор МГУ. Очень хороший человек. Он – теоретик, да и остальные – экспериментаторы – не хуже. </p><p>Сделали прототип. Кстати, здесь уместно сказать, что люди, которые делали прототип, с моей точки зрения, – образец стопроцентной отдачи себя науке. Было потрачено, с 81-го года по 96-й, 15 лет и почти не было публикаций у десяти человек. Наконец, они сделали прототип, который начал измерять маленькие колебания. Насколько маленькие? Отношение дельта эль к эль (относительно изменения длины) примерно на уровне 10-19 при времени измерения в сотую секунды. Эти числа близки к тому, что нужно сделать. Но не совсем. Время примерно то же, потому что, скажем, от слияния нейтронных звезд должен быть всплеск со средней частотой около ста герц. Но отношение дельта эль к эль, это растяжение и сжатие, должно быть меньше примерно в сто раз. </p><p>В этот момент, в 96-м году, тот же Национальный Фонд научных исследований США решил – пора вкладывать деньги в эту программу всерьез, потому что опыт показал, что это, как говорят англичане, американцы, "doable": это можно сделать. И вместо 40 метров сделали машину, которую сейчас мы посмотрим на следующем кадре, пожалуйста. </p><p>Вот модель процесса: две нейтронные звезды, попавшие на относительно близкое расстояние, такой у них был прицельный параметр, сливаются. Они выдают всплеск гравитационного излучения. Редкое событие, поэтому одной галактикой здесь не обойдешься. В галактике это бывает редко. Есть споры – раз в десять тысяч лет или раз в сто тысяч лет. Значит, надо брать много галактик.</p><p>Поэтому расстояние, на которое надо рассчитывать – сто миллионов, может быть, для надежности, 200 световых лет. Или 1026 сантиметра. А на земле расположить эту комбинацию из зеркал и лазера. Упрощенная схема, но больше ничего. </p><p>Естественно, сразу спрашивается, а что нужно? Нужно отношение дельта эль к эль, по крайней мере, 10-21, лучше в минус двадцать второй. Этот проект носит название "ЛАЙГО". Срок жизни этого проекта, у него есть разные этапы, примерно 30 лет. Здание, аппаратура, основные конструкции построены из этого расчета. Стоит он недорого, одну треть подводной лодки. Подводная ядерная лодка стоит 2 миллиарда долларов, а это – одну треть, и за 30 лет, а США производит 2 подводные лодки в год.</p><p>Можно следующий кадр?</p><p>Это вид с высоты примерно 50 метров, с вертолета. Это главное здание. Здесь надземный туннель. Здесь зеркало, здесь набор зеркал. Конструкция уходит туда на 4 км, и там тоже кончается зданием, и там тоже в конце трубы висит нежно подвешенное зеркало. А.Г. Вот у меня сразу возникает вопрос, простите, не могу от него отделаться, как "нежно подвешенное"? Как можно аннулировать шум?В.Б. Я к этому подойду. Пожалуйста, следующий кадр. Это я – для масштаба, а вот это – труба. А.Г. "Я – для масштаба"...В.Б. Да. А это коллеги, которые ухаживают за конструкцией. Их две, таких антенны. Одна находится недалеко от Нового Орлеана, а вторая – недалеко от Сиэтла. Между ними 10 световых миллисекунд или 3000 км, так что можно работать в схеме совпадений. И даже, если удастся, различить фронт, направление на источник.</p><p>Пожалуйста, следующий кадр.</p><p>Вот опять же я – для масштаба. Вот броневая половинка туннеля, сделанная из бетона для того, чтобы трубу защитить. Вот это профессор Торн, зачинатель этого дела, значит, вон там профессор Вит Чайн. Кадры не очень ясные. Можно и меня, может быть, узнать. Это студент.</p><p>Дальше, пожалуйста.</p><p>Внутри большого здания много труб, там система несколько сложнее, чем то, что я описал, но основная сущность – два зеркала и еще два зеркала, и больше ничего. Чаны есть. В чанах стоят шедевры антисейсмической изоляции, которые порядков на 11 глушат сейсмику, пролезающую, стремящуюся пролезть к зеркалу.</p><p>Пожалуйста, следующий кадр.</p><p>Если вы хотите подойти, вскрыть чан и заменить там что-нибудь внутри, вам придется надеть такие вот халаты, "намордники" и перчатки. Пыль не должна проникать, потому что пылинка на зеркале – это плохо.</p><p>Пожалуйста, следующий кадр.А.Г. А каков размер зеркал?В.Б. Вот оно. Это доктор Елена Армандула держит зеркало в руках. А вот его маленькая модель, модель уменьшенных размеров, с которой мы много раз игрались. Она стоит всего лишь 200 долларов, и можно наиграться всласть, что мы и сделали, об этом я чуть позже расскажу. А вот это стоит 50 000 долларов, потому что оно покрыто двадцатью парами слоев, которые очень хорошо отражают фотоны. Фотоны используют здесь многократно с тем, чтобы не слишком много энергии тратить и добраться до цифры дельта эль к эль 10-21 или -22. Для этого нужно много раз использовать фотон, и начальная мощность должна быть большой. Это дешевое зеркало, а это не очень. Это 200 долларов всего лишь стоит, а то – 50 тысяч. И покрытие еще 30. Вот так.</p><p>Теперь, значит, как избавляться от шумов? Один момент я уже отметил.А.Г. Чан.В.Б. В чане антисейсмический изолятор. Набор плиток и пружинок, у которых частота ниже той, на которой мы работаем. Они просто давят, поглощают, утишают сейсмическую волну, которая в обычных условиях – это 10-4, 10-5, если частоты повыше – 10-6 сантиметра. Но не 10-16, которая нужна, чтобы было при 4 км от цифры 10-21. </p><p>Следующий момент. Вообще говоря, не все так просто, как я описал. Шумов, действительно, очень много. И первый враг – броуновские шумы. На каждую колебательную степень свободы приходится кТ, на обычную степень – половиночка кТ, надо от них избавиться. Конечно, можно было бы все морозить, но это, во-первых, дорого; во-вторых, можно заморозить, скажем, до трех градусов Кельвина. Выигрыш будет всего лишь сто раз по температуре, а по колебаниям – всего лишь 10. Надо куда сильнее. Есть прием, который был давно придуман, он заключается в том, что делают всю механическую систему высокодобротной. Тогда вся энергия – вблизи резонанса. А на крыльях – ничего. А гравитационная волна, вот то, что заставляет сжиматься и разжиматься, неоднородное ускорение, она, скажем, на ста герцах, далеко. И посему начались проблемы...</p><p>Сначала этот проект был национальным, но лет 6-7 тому назад он стал, по существу, международным. К нему присоединились британская группа, немецкая группа и две группы из России. Одна из Института прикладной физики из Нижнего Новгорода, а вторая – из МГУ, я к ней принадлежу. Теперь немножечко о том, что мы сделали.</p><p>Профессор Митрофанов и его коллега Токмаков такое зеркало, которое вы держали в руках, именно такое же, подвесили на ниточках из очень чистого кварца, у которого маленькое акустическое затухание, то, что нужно. И сделали постоянную времени, времени затухания маятника – маятник Галилея, здесь никаких хитростей нет – больше пяти лет при комнатной температуре, добротность – два на десять в восьмой. </p><p>Потом выяснилось, что есть еще много элементов, которые надо проработать. Например, есть такая неприятность – флуктуация температуры. При полном равновесии, тем не менее, температура вашего левого плеча не равна правому, она все время немножечко дергается. Если взять все плечо, то это малые доли Кельвина, но этого достаточно, если учесть коэффициент теплового расширения, чтобы появилась рябь на поверхности зеркала. В результате нельзя делать маленькое лазерное пятно, надо делать большое. Это и сделали мои коллеги Сергей Петрович Ветчанин и Михаил Денисович Городецкий. Сделали полный анализ, когда уже вся программа шла на полном ходу. Поэтому она сейчас перестраивается, увеличивают размер пятна. А на втором этапе "ЛАЙГО-2" там будет пятно размером с ползеркала. </p><p>И есть, наконец, третья проблема, самая серьезная. Значит, все-таки маленькие величины: мечтают добиться в 2010 году дельту эль к эль 10 в минус 22-ой. Амплитуда колебаний 10 в минус 17-й сантиметра. Нет ли здесь квантовых неприятностей? Они есть, хотя температура комнатная, и кругом полно частиц, у которых энергия намного больше той энергии, – если говорить о энергии, скажем, поступательного движения, – которую можно обнаружить. Тем не менее и от этого можно избавиться. Вот такими приемами. </p><p>Центр масс 10-ти или 20-килограммового зеркала будет вести себя как квантовый объект. Известно, что той постоянной времени, о которой я вам сказал, если вспомнить только один вид броуновского движения, достаточно, чтобы в течение нескольких миллисекунд строго выполнялись соотношения неопределенности Гейзенберга. Фотоны стучат, сообщают неопределенность импульса. И координата не может быть измерена точнее, чем некоторый порог, для которого уже придумали название – стандартный квантовый предел. Он определяется соотношением неопределенностей и временем измерения. </p><p>Кстати сказать, как ни странно, этот порог был, так сказать, осознан относительно недавно. Квантовая теория – это 27-28 годы, а порог в 67-м году был описан. Мои коллеги и я понимали, что он есть, но не очень понимали его существо. Но чувствовали себя примерно так же, как вы, когда вам рассказывают о квантовой теории: есть волновые свойства у центра массы зеркала килограмм 10-ти массой и при комнатной температуре, но при хорошей изоляции. </p><p>Вот здесь, так сказать, наступает некоторый критический момент в поиске. Вся система рассчитана лет на 30 работы. Сейчас идет запись на двух антеннах. Запись закончится где-то в мае, начнется обработка. Посмотрим, не видно ли чего-либо, а вдруг чего-нибудь обнаружили? Но, по-видимому, нет – по чувствительности дотянулись до расстояния немножечко больше, чем мегапарсек от Земли. Надо все-таки хотя бы 10 мегапарсек иметь. Заведомо эта цифра будет получена в течение ближайших пяти лет, сомнений нет. </p><p>Дальше начнется полная реконструкция, и будут использованы, в частности, разработки МГУ и разработки из Нижнего Новгорода. Я опускаю технические детали, ведь зеркало – это шедевр технологического и физического искусства, если хотите – науки, как угодно называйте. </p><p>Наконец, еще одна трудность. Если квантовое поведение, если есть предел – как его обойти? Есть рецепт, он был найден исторически относительно недавно. Надо перестать избирать координату. Надо избирать, например, импульс. Импульс сам с собой коммутирует во времени у свободной массы. Но это сделать не очень просто. И надо как-то переделывать так, чтобы не слишком дорого было. Все-таки треть подводной лодки, правда? Это дорого. Это же не на войну, это же для удовлетворения любопытства. А.Г. Ну, да.В.Б. Посему, пришлось поработать. Есть элегантная модель, предложенная моим коллегой профессором Халили. Можно обойти проблемы, и относительно простые варианты наклевываются, но они еще не доработаны, над этим предстоит работать. Так что все будет интересно и очень здорово. Положительный результат мы с Михаилом Васильевичем гарантируем. Может быть, так случится, что он будет несколько позже, чем мы хотели бы, но будет. </p><p>Михаил Васильевич дальше расскажет о других длинах волн и о других источниках. Но заведомо известно следующее: узнаем, какова популяция, сколько нейтронных звезд в галактиках, и по форме всплеска узнаем, каково уравнение состояния нейтронной звезды. Заведомо. Второе. Есть большая вероятность, не на первом этапе, а на втором, обнаружить более редкие события, когда нейтронная звезда сталкивается с черной дырой. Вот тут будет момент истины для общей теории относительности. А.Г. Есть черные дыры или их нет?В.Б. То, что есть плотные образования, очень на них похожие, сомнений не вызывает. Вот есть ли у них корочка, радиус Шварцшильда? Когда гравитационный потенциал точно равняется "с2". Это означает, что теория относительности справедлива до этой точки, до этой величины. Вот на это никаких экспериментальных доводов нет. И посему это будет самое интересное – столкновение нейтронной звезды с черной дырой или двух черных дыр. Профессор Торн, которого я упоминал, говорит: "Внутри черной дыры нет ничего, кроме как пространства и времени". Это образец, если хотите, фундаментализма, фундаменталистского подхода к тому, куда придет наука: количество терминов, количество сущностей должно сужаться. С его точки зрения нет ничего, кроме пространства и времени. А.Г. Что же тогда образует эту страшную гравитацию и горизонт событий? Где масса-то, если есть только пространство и время?В.Б. Гравитационная волна – это рябь на поверхности кривизны. А.Г. Кривизны пространства-времени?В.Б. Да. А источники – это особые точки, тут можно чисто геометрический подход применить, если считать, что точки существуют. Их нет на самом деле, но что-то похожее на точки. Это особенность для геометродинамики. Так можно, запрета нет. Но фундаментализм здесь просто пока еще восклицает, никаких рецептов и проверяемых на опыте результатов не дает. Вот это то, что я хотел рассказать. А.Г. Я только один вопрос задам: а какова вероятность столкновения двух черных дыр? В.Б. Есть несколько моделей. И астрофизики здесь до конца не договорились. Если одна галактика, то, согласно замечательному физику Хансу Бете и Брауну, его соавтору, – раз в десять тысяч лет. А.Г. Это нейтронные звезды? Или и то и другое?В.Б. Нет, нейтронные звезды только.А.Г. А черные дыры? Коллапс двух черных дыр? Мне представляется вероятность меньшей, нет?В.Б. Наверное, меньшей. Посему мечта не 10 в 26-й сантиметра, а чуточку увеличить чувствительность. И тогда мы дойдем почти до горизонта событий. Будут космологические расстояния, следовательно, мы будем...А.Г. Тогда все, что происходит, мы услышим. В.Б. То, что происходило. А.Г. Происходило, конечно.В.Б. В оптимистическом случае – это сто миллионов лет тому назад, в пессимистическом – 300, 400 миллионов, может быть миллиард лет. Миллиард лет – это уже космологические расстояния. Но я не хочу отнимать время у Михаила Васильевича.А.Г. Да, пожалуйста.М.С. Вадим Борисович рассказал о том, что люди делают на Земле, а я расскажу о том, как люди пытаются зарегистрировать гравитационные волны в космосе. Вадим Борисович привел очень яркий пример: если мы перейдем от обычных наземных излучателей к космическим, резко вырастает мощность. Естественно, чем больше у нас масса, чем быстрее движение, тем больше мощность гравитационного излучения. Самое быстрое движение, самые большие массы – это ранняя Вселенная. Пожалуйста, картинку следующую. </p><p>В ранней Вселенной мы можем ожидать сильного излучения гравитационных волн. Здесь изображен еще один способ детектирования гравитационных волн, но теперь чисто космический способ. Здесь изображены три спутника. То кольцо, которое в левом нижнем углу, это один спутник, с двумя другими спутниками формируется треугольник. Но этот треугольник будет уже не на Земле, а на орбите Земли. Такой схемой можно будет детектировать очень долгие периодические источники. А.Г. Это тот же интерферометр только таких размеров, что...В.Б. Это то же самое, в принципе: 5 миллионов километров вместо четырех километров. Все.М.С. По сути, по идейной стороне он ничем не отличается от того интерферометра, про который рассказывал Вадим Борисович, за одним только исключением, что размеры его гораздо больше. Примерно в миллион раз. Соответственно, и планируемая чувствительность тоже больше. Наверняка можно сказать, что эти группы встретят очень большие технологические трудности. Но будем надеяться, что они их преодолеют. Пожалуйста, следующую картинку. </p><p>Какие могут быть источники в ранней Вселенной? Вы видите здесь нарисованную модель так называемого рождения гравитонов из вакуума. В ранней Вселенной у нас могло быть так называемое параметрическое усиление гравитонов, и те гравитационные волны, которые существовали в виде вакуумных колебаний, могли усиливаться и превращаться во вполне зримые и ощутимые гравитационные колебания, которые мы можем зарегистрировать сейчас. </p><p>Отличие от такого изображения только в том, что спектр гравитационных волн очень широкий. Самые высокие частоты – это 100 мегагерц, самые низкие частоты составляют величину порядка 10 в минус 18-й герц, или порядка современной постоянной Хаббла. Следующую картинку, пожалуйста. Здесь еще раз показан прибор, который называется интерферометр "LISA", который, в принципе, может регистрировать гравитационные волны от ранней Вселенной. </p><p>Давайте мы пройдемся по всему диапазону, который могут представлять гравитационные волны. Вадим Борисович рассказал об интерферометре "ЛАЙГО", который рассчитан, в основном, на диапазон обычных волн, это от 1 килогерца до ста герц. Другими словами, на тот диапазон, который мы можем слышать. </p><p>Интерферометр типа "LISA" предназначен для гораздо более низкочастотных гравитационных волн, период их от нескольких сотен секунд до нескольких часов. Электромагнитных волн такого диапазона просто нет, они не распространяются в нашем пространстве. Любая достаточно мягкая плазма их поглотит и не позволит им распространятся. Гравитационные волны чрезвычайно слабо взаимодействуют с веществом, и поэтому могут распространяться. Надо сказать, что трудность детектирования гравитационных волн связана именно с тем, что они слабо взаимодействуют с веществом, но в этом же и их прелесть. Они доходят до нас от самых ранних стадий эволюции Вселенной. Следующую картинку, пожалуйста. </p><p>Вот вы видите, схему интерферометра "LISA" на орбите. Желтый кружок в центре – это Солнце, белый круг – это орбита Земли, и вокруг штриховой линией показано положение трех интерферометров. Здесь будет бегать лазерный луч, который будет подвергаться действию гравитационной волны и который будет показывать экспериментаторам, насколько сильно действует на них гравитационная волна. Следующую, пожалуйста, картинку. </p><p>Эти три спутника будут двигаться вдоль орбиты Земли и совершать вот такие движения в течение нескольких лет, что позволит накапливать гравитационный сигнал от далеких источников – не только от двойных темных дыр или еще от каких-то источников двойного типа, но, в частности, попробовать зарегистрировать гравитационно-волновой шум от ранней Вселенной. Это те гравитоны, которые были порождены в самые ранние моменты времени. Следующую картинку, пожалуйста. </p><p>Что мы можем сказать о другом диапазоне? Здесь представлен еще один способ детектирования гравитационных волн. Надо сказать, что идейно он ничем не отличается от интерферометра. Здесь тоже у нас есть приемник, но здесь приемником выступает приемная система радиотелескоп-пульсар. Это аналог лазера. Пульсар – это космический объект, который излучает очень высокостабильные импульсы электромагнитного излучения. Эти импульсы электромагнитного излучения обладают не намного худшей стабильностью, чем у хороших лазеров. И если на распространяющиеся электромагнитные волны от пульсара до радиотелескопа действуют гравитационные волны, как здесь показано, то они будут чуть-чуть менять фазу этих импульсов, и на радиотелескопе мы будем это видеть, как если бы они чуть-чуть запаздывали или шли с опережением. Поэтому, в сущности, здесь тоже реализуется интерферометр, но только с гигантскими размерами, поскольку расстояние от ближайшего пульсара до Земли, это сотни парсек. Это уже даже не 5 миллионов километров, это уже чисто астрономические расстояния. </p><p>У нас есть и другие способы детектирования очень низкочастотных гравитационных волн. Следующую, пожалуйста, картинку. Эти гравитационные волны имеют частоту, сравнимую с горизонтом нашей Вселенной, частоту порядка 10 в минус 18 герц. В данном случае они изменяют так называемую поверхность последнего рассеяния. То есть, ту поверхность, откуда до нас доходит реликтовое излучение, которое было рождено в ранней Вселенной. И мы можем наблюдать действие гравитационных волн в виде анизотропии этого реликтового излучения. Здесь я должен два слова сказать о том, что такое реликтовое излучение. </p><p>Надо сказать, что все тела при расширении охлаждаются, а при сжатии нагреваются. Наша Вселенная расширяется, и она охлаждается. В прошлом она была гораздо горячей, и в ней была так называемая первичная плазма. Эта первичная плазма состояла из нескольких сортов частиц, в частности, одними из таких частиц были фотоны. После того как плазма остыла достаточно для того, чтобы электроны рекомбинировались протонами, у нас образовалось нейтральное вещество, и фотоны начали распространяться свободно. Эти фотоны сейчас астрономы и наблюдают в виде реликтового излучения. Это реликтовое излучение пошло с так называемой поверхности последнего рассеяния. Представьте себе, что вот здесь у нас температура упала настолько, что фотоны смогли излучаться, распространяться оттуда свободно. При этом они распространяются во всех направлениях, но только в одном направлении – к телескопу – мы их увидим. И такие фотоны формируют то, что называется "поверхность последнего рассеяния", и мы видим источник во Вселенной, внутри которого мы находимся. Это гигантский источник, самый далекий из известных во Вселенной, и называется он "поверхность последнего рассеяния". </p><p>Эта поверхность последнего рассеяния под воздействием гравитационных волн тоже немножко колышется, точно так же, как два плеча интерферометра. И мы наблюдаем это в виде горячих и холодных пятен реликтового излучения. Пожалуйста, следующую картинку. </p><p>Надо сказать, что анизотропия реликтового излучения была открыта примерно 10 лет назад, и в течение этих лет астрономы очень активно исследовали анизотропию реликтового излучения. Но новый этап этого изучения наступил с выводом спутника "WMAP", который расшифровывается так "Вилкинсон майкровейв анизотропи проуб". Этот спутник был запущен в точку Лагранжа L2 и служит для того, чтобы записать всю информацию об анизотропии реликтового излучения со всей сферы. Пожалуйста, следующую картинку. Вы видите карту, которую сделал этот спутник. Красные пятна на этой карте означают повышенное значение температуры в данном направлении, синие – пониженное. Итак, мы видим всю сферу вокруг нас в виде такой пятнистой поверхности. Гравитационные волны и формируют эту поверхность, они являются стохастическими волнами, но в отличие от тех волн, которые мы можем дать в проекте "ЛАЙГО", мы видим не изменения их во времени, а изменение их в пространстве, поскольку сама гравитационная волна – очень низкочастотная. Конечно, наблюдать, как она эволюционирует во времени, мы не можем. Тем не менее, мы можем наблюдать, как она эволюционирует в пространстве, как меняется она по сфере "последнего рассеяния". </p><p>Вот эта карта была сформирована буквально месяц назад. Американские астрономы, которые наблюдали на спутнике WMAP, опубликовали свои результаты в начале февраля. Надо сказать, что этот спутник будет работать еще год, и будем надеяться, что они получат еще более точные данные. </p><p>Теперь немножко о гравитационных волнах. Анизотропия, которая сейчас наблюдается, вызвана так называемыми флуктуациями плотности. Это те флуктуации плотности, которые тоже были порождены в ранней Вселенной, и которые сейчас сформировали крупномасштабную структуру (галактики, звезды), и благодаря чему возникли и мы с вами. Совершенно точно можно сказать, что флуктуации, которые наблюдают сейчас астрономы, это не гравитационные волны, но, тем не менее, есть основание думать, что мы уже очень близки к тому пределу, когда гравитационные волны можно будет наблюдать и в таком диапазоне частот тоже. Почему? Дело в том, что общие теоретические предсказания указывают на то, что гравитационные волны должны вызывать анизотропию примерно в 10, может быть, в 20, в 30 раз меньше, чем то, что уже зарегистрировано. Надо сказать, что чувствительность таких экспериментов очень быстро растет со временем. Само реликтовое излучение было открыто в 66-м году, температура этого излучения – 3 градуса Кельвина. Оно, надо сказать, было открыто случайно, в результате испытания нового радиометра. Понадобилось 10 лет, чтобы открыть дипольную гармонику в анизотропии реликтового излучения, связанную с тем, что наша Земля, Солнечная система движется сквозь реликт, и из-за этого равновесное излучение кажется, с одной стороны, более ярким, с другой стороны более тусклым. Понадобилось еще 20 лет, чтобы открыть другие гармоники в анизотропии реликтового излучения. </p><p>Теперь мы уже подошли к тому, что полностью промерен спектр этого реликтового излучения, и уже наблюдается поляризация этого излучения. Давайте я два слова скажу о том, почему это так важно. Дело в том, что гравитационные волны и скалярные возмущения, возмущения плотности, совместно производят вот эту картинку, эту рябь на поверхности последнего рассеяния, и для того, чтобы разделить вклад гравитационных волн от скалярных возмущений, от возмущений плотности, мы должны наблюдать еще некоторые параметры этого излучения, а именно, два параметра Стокса. Вся интенсивность, все электромагнитное излучение характеризуется несколькими параметрами Стокса, это интенсивность и два дополнительных параметра, которые характеризуют поляризацию реликтового излучения. Вот поляризация реликтового излучения однозначно даст вывод о том, что гравитационные волны зарегистрированы. </p><p>И еще два слова я скажу о том, что поляризация реликтового излучения уже открыта. Она открыта в результате проведения эксперимента, который называется "DASI", в сентябре прошлого года. Группа астрономов, которые проводили этот эксперимент, опубликовали данные о том, что они наблюдают поляризацию реликтового излучения, а на спутнике WMAP даже построили спектр, поскольку спутник – гораздо более чувствительный прибор, чем тот эксперимент, который делали астрономы с Земли. Надо сказать, что, несмотря на то, что поляризация открыта, это все-таки поляризация, вызванная не гравитационными волнами, а опять-таки возмущениями плотности. Но это уже близко к тому пределу, когда должна наблюдаться поляризация, вызванная гравитационными волнами. </p><p>Итак, мы кратко посмотрели на все диапазоны, в которых может быть гравитационное излучение – от диапазона 1 килогерц (это звуковой диапазон) до диапазона 10 в минус пятой герц, что соответствует одному дню или нескольким часам. Потом мы посмотрели на другой способ детектирования гравитационного излучения, с помощью пульсаров, это диапазон в несколько лет. И наконец, перешли к гравитационным волнам, которые являются самыми длинными гравитационными волнами во Вселенной, которые имеют длину волны, сравнимую с горизонтом Вселенной – несколько десятков гигапарсек. Все эти волны должны нести очень интересную информацию о ранней Вселенной. </p><p>Вадим Борисович сказал уже, что очень интересная информация будет о нейтронных звездах. Но нейтронные звезды – это все-таки нечто уже известное физикам. Нейтроны – это объект, который достаточно хорошо изучен. То, что пойдет из ранней Вселенной, те гравитационные волны, которые будут нести информацию о самых ранних стадиях, это то, что физиками совершенно не изучено. Есть достаточно много теоретических предположений о том, какова должна быть физика в ранней Вселенной, но никаких экспериментальных указаний на это. </p><p>Мне хочется показать еще одну картинку, покажите ее, пожалуйста. Что будет исследоваться в дальнейшем? Поляризация, которая будет исследоваться, поляризация реликтового излучения, ее исследование будет осуществляться в нескольких экспериментах. В частности, она будет исследоваться на международной научной стации "Альфа". Вы видите станцию "Альфа", она уже выведена на орбиту и летает уже несколько лет, на ней будет проводиться очень много научных экспериментов. И в частности, будет проводиться российско-итальянский эксперимент "SPORT", который специально посвящен исследованию поляризации реликтового излучения. Будем надеяться, что в этом эксперименте удастся зарегистрировать так называемую b-моду поляризации, которая прямо укажет на амплитуду гравитационных волн, на то, какая была физика ранней Вселенной.</p><p>Помимо этого эксперимента будет еще проводится эксперимент "ПЛАНК". Это гигантский эксперимент, в который вовлечены все европейские страны (пожалуй, за исключением России) и помимо этого еще и Соединенные Штаты. В этом эксперименте астрономы хотят промерить полностью и анизотропию реликтового излучения, и поляризацию. И узнать, какой у нас спектр от флуктуаций плотности и какие у нас гравитационные волны идут от ранней Вселенной. Зарегистрировав волны от ранней Вселенной, мы сможем восстановить физику ранней Вселенной, и посмотреть на то, какие законы там могли быть.А.Г. У вас есть теоретические предположения о том, что это может быть за физика?М.С. Конечно. Предположений очень много. Но предположения могут быть и ошибочными. Пожалуйста, покажите следующую картинку. </p><p>Здесь изображены те знания, которые есть сейчас у нас. Астрономические наблюдения в оптическом диапазоне охватывают ближайшую к нам Вселенную – мир галактик. Радионаблюдения, выполненные, в частности, на спутнике WMAP, охватывают сферу последнего рассеяния. Та картинка, которая формируется на сфере последнего рассеяния, идет из так называемой ранней Вселенной, со стадии инфляции. Стадия инфляции с теоретической точки зрения достаточно хорошо изучена. Надо сказать, что многие из ее предсказаний оправдались, в частности, оправдался так называемый спектр Харрисона-Зельдовича, который сейчас наблюдают в виде флуктуации реликтового излучения. </p><p>Но есть еще одна часть, которая говорит о том, что и до инфляции что-то было. И условно этот момент времени называется "сингулярностью". Надо сказать, что сингулярность – это неотъемлемая черта, которая появляется в общей теории относительности, и до сих пор это ассоциировалось просто с некоторой особой точкой. Еще одну картинку, пожалуйста. В.Б. Надо пояснить, сингулярность – это то, что внутри черной дыры. А.Г. Понятно, все стремится к бесконечности. В.Б. Если хотите. Но есть и другая точка зрения.М.С. Вот на этой картинке показано, как представлял себе средневековый астроном, что увидит человек, заглянувший за небесную твердь. Когда Галилей изобрел свой телескоп, та картинка, которую увидели астрономы, довольно существенно отличалась от этого изображения. Надо сказать, что когда астрономы будут обладать гравитационно-волновыми приборами и смогу заглянуть внутрь черной дыры или в раннюю Вселенную, не исключено, что та картинка, которую они увидят, будет довольно сильно отличаться от этой. А.Г. От той, которую мы сегодня имеем. Ну, что ж, сколько нам ждать осталось и в том и в другом случае? Я имею в виду, когда эксперимент будет проведен?В.Б. Оптимистически – если вы говорите о наземных антеннах...А.Г. И о наземных, и о...В.Б. Когда они дадут положительные результаты? А.Г. Результат.В.Б. Да, результаты – положительный. А.Г. Результат.В.Б. Результат – это значит, что вздрогнули четыре пары зеркал. Две под Сиэтлом и две под Новым Орлеаном. Я думаю – 2008 год. Может быть, я ошибаюсь на два года. Может быть. 0,95 я даю. Могу поспорить.

gordon: Поиски чёрных дыр

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Черепащук Анатолий Михайлович– член-корреспондент РАН, доктор физико-математических наук, профессор, директор Государственного астрономического института им. П.К. Штернберга МГУ</li><li>Гальцов Дмитрий Владимирович– доктор физико-математических наук, профессор МГУ им. М.В.Ломоносова</li></ul><p><strong>Александр Гордон: С чего мы начнем разговор о черных дырах? Я полагаю, начать стоит с того, что прежде, чем это стало фактом наблюдаемом, это был теоретический факт, то есть это было предсказано. Вот если можно поподробнее, что это за предсказание такое?Дмитрий Гальцов: Самое поразительное, что предсказание было сделано очень давно. Считается, что первой работой, в которой действительно был предсказан объект, похожий на черные дыры, была работа Митчелла 1784 года. Собственно, что там было сделано?</p><p>Митчелл обратил внимание на то, что если существует достаточно массивный и компактный объект небольшого радиуса, то его гравитационное поле будет столь большим, что для любого тела для того, чтобы оторваться, преодолев силу притяжения, для этого нужно приобрести, нужно иметь скорость, называемой второй космической скоростью. И с уменьшением радиуса при постоянной массе эта скорость увеличивается, и в какой-то момент она может достигнуть скорости света. Ну, а если радиус еще меньше, то тогда уже свет не сможет оторваться, и таким образом, такое тело было бы невидимым. Вот это, собственно, он описал. Еще поразительно то, что в той же работе было указано и как такие объекты можно в принципе наблюдать, если они невидимы.</p><p>Идея была простая, что если есть второй объект, который в паре с этим находится и будет вокруг него вращаться и наблюдаться, то таким образом можно будет увидеть такую ненаблюдаемую звезду. Слово "черная дыра" тогда еще не существовала.А. Г. А как он их называл?Д. Г. Просто "невидимая звезда".Анатолий Черепащук: "Темная звезда".Д. Г. Да, "темная звезда". Конечно, с современной точки зрения, в этом рассуждении есть даже не одна, а две ошибки. Первая ошибка это то, что он использовал в вычислениях представление о световых квантах как частицах с массой и в формуле для энергии использовал mv квадрат пополам. Теперь мы знаем, что фотоны имеют скорость света всегда, а масса их равна нулю. То есть вместо массы в формулу для энергии взаимодействия этой частицы с тяжелым телом входит энергия, деленная на скорость света в квадрате, поэтому энергия фотона – это постоянная Планка, умноженная на его частоту. Если сделать такую замену, то мы обнаруживаем, что на самом деле не скорость здесь меняется по мере движения фотона, удаления фотона от звезды, а меняется его частота, происходит красное смещение. Поэтому из таких же соображений можно получить, что фотон, который покидает поверхность звезды, при удалении на большое расстояние будет иметь меньшую частоту, таким образом, он краснеет. Так вот, если считать, что он полностью покраснел до нуля, что называется, и его энергия, таким образом, на бесконечности равна нулю, то мы получим ту же формулу для гравитационного радиуса, которую получил Митчелл. Эту формула для критического значения радиуса сферического тела, при котором фотон не может оторваться, получается точно такая же.</p><p>Вторая ошибка состоит в том, что им применялась Ньютоновская теория гравитации. На самом деле, в столь сильных гравитационных полях, как мы знаем из общей теории относительности, нужно уже применять более сложные формулы. Такая более сложная формула была получена Швардшильдом, и тоже при весьма героических обстоятельствах. Буквально спустя два месяца после появления общей теории относительности в 1915 году Швардшильд получает первое решение этой теории для гравитационного поля сферической массы вне этой массы, то есть в пустоте, которая получила название "решение Швардшильда". Это было во время Первой мировой войны; он был на фронте, и через несколько месяцев его не стало. Вот такая история этой работы. </p><p>Дополнительно к тому, что в формуле Швардшильда предсказывается гравитационный радиус, немножко изменяется интерпретация, потому что в общей теории относительности не просто фотон испытывает красное смещение при движении в гравитационном поле (поскольку меняется его энергия), но изменяется ход часов. Изменяется по очень похожей формуле, поскольку частота это величина обратная промежутку времени. И если обратиться к общей теории относительности, то тогда получается другое соотношение, выражающее замедление хода часов при приближении к гравитационному радиусу, то есть время для удаленного наблюдателя и время для наблюдателя, находящего в сильном гравитационном поле, течет существенно по-разному. Причем для наблюдателя, который находится вблизи горизонта событий, проходит небольшой промежуток времени, в то время, как удаленный наблюдатель фиксирует большое время. И в пределе это замедление времени становится также бесконечным. Таким образом, не только поверхность звезды, которая приближается к гравитационному радиусу, невидима, но и время самого этого процесса приближения к гравитационному радиусу. Если наблюдатель, находящийся на ракете, приближается к гравитационному радиусу, то его движение по часам удаленного наблюдателя будет очень большим, в то время как для него это происходит за короткое время. Это, собственно, известный эффект, называемый "парадоксом близнецов" в общей теории относительности. Значит, во-первых, в движущейся системе время течет медленнее, и в сильном гравитационном поле время течет медленнее, поэтому возникает такое бесконечное замедление времени.А. Г. Простите, раз возникает бесконечное замедление времени, значит, для того наблюдателя, который находится вблизи радиуса и движется к звезде, идет бесконечное ускорение времени?А. Ч. Для внешней Вселенной.Д. Г. Да, конечно.А. Ч. Но и большое фиолетовое смещение. Он видит внешнюю Вселенную в фиолетовых лучах, потому что лучи света при приближении к гравитационному радиусу синеют, увеличивают свою энергию.А. Г. И он видит каллапсирующую Вселенную, если эта теория верна?Д. Г. Вот как и что он будет видеть, это вопрос довольно тонкий. Потому что на самом деле, если он пересек поверхность этого гравитационного радиуса, называемого горизонтом событий в общей теории относительности, то, действительно, для него прошло конечное время, причем очень маленькое. Если он движется со скоростью света и приближается к дыре солнечной массы это три километра, то это какие-то доли секунды. Но за это время для удаленного наблюдателя вся эволюция уже пройдет, поскольку время стремится к бесконечности. Теперь, для того, чтобы сравнить и вернуться в исходное положение, для этого нужно было бы выйти обратно, а это невозможно. Поэтому использовать эту ситуацию здесь довольно трудно.А. Ч. Нужно двигаться со скоростью больше скорости света, чтобы выйти из-под гравитационного поля.Д. Г. Нужно нарушить какие-то физические законы для того, чтобы воспользоваться этим бесконечным замедлением времени.А. Г. То есть ни при каких обстоятельствах мы не можем послать на черную дыру наблюдателя с тем, чтобы получить хоть какую-то информацию от того, что он там видел.А. Ч. Да, и потом вернуть его...Д. Г. После того как было открыто это решение и свойства горизонта событий были уже осознаны, потребовалось определенное время, чтобы понять, что это может быть реально наблюдаемый объект в астрофизике, и здесь было много мнений и за и против. В частности, Эйнштейн всегда высказывался так, что, вероятно, все же такая ситуация реально не может происходить, либо массы будет недостаточно для этого, либо в процессе эволюции такие объекты образовываться не смогут.</p><p>И вот любопытно, что в 39-м году Оппенгеймер и Снайдер (Оппенгеймер это человек, который считается отцом атомной бомбы) рассчитали коллапс сферического облака пыли, и картина была довольно ясной. Действительно, за конечное время происходит сжатие этого облака пыли в сингулярность. В какой-то момент пересекается гравитационный радиус. По часам удаленного наблюдателя, действительно, это время равно бесконечности, по собственному времени это время конечно. То есть вся эта картина динамически действительно была описана. И в том же году Эйнштейн публикует статью (это происходит в 39-м году; он был в это время уже в Принстоне), в которой он высказывает соображение, почему это на самом деле не может осуществляться в природе. </p><p>Дальше любопытная история: в 42-м году известный физик-гравитационист Бергман публикует книгу, и в этой книге, которая до сих пор очень хорошая книга, поскольку до сих пор используется в качестве учебника, он вообще не упоминает о работе Оппенгеймера-Снайдера, зато он пропагандирует соображения Эйнштейна.</p><p>И надо сказать, что, действительно, где-то до конца 50-х годов никакого продвижения в теории гравитационного коллапса практически не было. Где-то уже в конце 50-х годов появились новые работы, в которых, прежде всего, было указано, что есть, кроме решения Швардшильда, еще возможность описания внутренности черной дыры в других системах координат, других системах отсчета, и таких систем было найдено много. Потом в 63-м году было открыто решение, описывающее вращающуюся черную дыру, решение Керра; и вот это решение, довольно сложное математически, сейчас считается стандартным решением в теории черных дыр. </p><p>Ну, и начиная с 68-го года, когда уже появился термин "черная дыра", предложенный Уилером, и до 75-го года, как обычно считается, была уже детально разработана теория черных дыр в ее современном понимании. </p><p>Одним, скажем, из утверждений, было утверждение Вилля, что черная дыра не имеет волос. Это означает, что когда произошел гравитационный коллапс, все ушло под гравитационный радиус. Мы можем видеть только некоторые параметры этого объекта, то есть мы можем видеть его массу, его угловой момент, электрический заряд. И это все, что от него осталось, независимо от того, что было вначале какой бы сложной ни была звезда, какими бы там параметрами ни обладала, то есть многообразие звезд гораздо больше, чем многообразие черных дыр.</p><p>Кстати, впоследствии оказалось, что это вовсе не всегда так, что это зависит от того, какая же материя участвует в этом процессе. Скажем, материя более сложная, чем электромагнитное поле или пыль, например, поля Янга-Милса, которые участвуют в сильных взаимодействиях, уже приводят к совершенно другим закономерностям. Там есть и волосы, и черные дыры, но не такие, как здесь. Но стандартная модель, была основана на некоторых утверждениях; их можно просто перечислить: это общие теоремы сингулярности, доказанные Пенроузом, а затем в работах Хокинга и Пенроуза. Была высказана гипотеза о таких сингулярностях, которые, вообще, действительно возникают практически всегда, в любых решениях общей теории относительности, если вещество, которое там предполагается заложенным, удовлетворяет обычным предположениям о положительности энергии и некоторым другим. Тогда, действительно, в таких решениях, независимо от сферической симметрии или какой-то другой симметрии, общей закономерностью являются возникновение сингулярностей. И очень во многих случаях можно доказать еще и то, что получило название принципа космической цензуры: сингулярность должна быть скрыта под горизонтом событий. Это и есть типичный образ черной дыры. А новое было то, что "черная дыра" это не какое-то частное решение, вроде решения Швардшильда или решения Керра, обладающее специальной симметрией, а что этот общее явление, общее предсказание релятивистской теории гравитации. </p><p>Ну, затем были сформулированы более тонкие утверждения, что, скажем, горизонт должен обладать обязательно сферической топологией, что он не может быть, скажем, тором или каким-нибудь кренделем – что, кстати, потом оказалось тоже не совсем верным. Это верно только в том случае, если нет космологической постоянной. При отрицательной космологической постоянной возможны более сложные черные дыры, скажем, с топологией сферы с ручками, кренделей всевозможных и так далее.</p><p>Или же что поверхность горизонта событий может только возрастать...А. Ч. При слиянии черных дыр.Д. Г. Да. В любых процессах поверхность горизонта событий возрастает. И это было как бы прообразом термодинамической аналогии, потому что довольно скоро было осознано, что картина черной дыры совместна с принципами термодинамики, то есть с тем, что энтропия должна возрастать лишь только в том случае, если, действительно, черной дыре нужно приписать энтропию пропорциональную поверхности, площади поверхности горизонта событий. Иначе, если газ падает в черную дыру, то поглощается не просто материя, но поглощается и мера хаотичности, то есть энтропия. </p><p>И как раз завершением, что ли, этого периода было открытие геометрического характера энтропии черной дыры и вообще новая интерпретация понятия энтропия, которую обычно всегда связывали со статистическим усреднением в физике, а здесь это уже некоторая геометрия, которая дает понятие. А причина такова, что, действительно, энтропия – это потеря информации за счет усреднения или за счет горизонта событий. </p><p>Ну, вскоре после этого было предсказано уже испарение черных дыр. Это уже квантовый этап, о котором мы, может быть, если успеем, поговорим попозже. Но вот такова стандартная модель, которая сложилась где-то к 75-ому году.А. Г. Это еще до наблюдательных данных, когда не было обнаружено ни одного объекта, который бы мог бы подходить под эти параметры?Д. Г. Да. Вот тогда уже очень активно начали астрофизики здесь разворачиваться, и очень быстро появились первые сведения о Лебеде.А. Ч. Сейчас можно просто резюмировать. К настоящему времени мы имеем свыше ста объектов, свойства которых чрезвычайно похожи на свойства черных дыр. Причем все необходимые условия, которые накладываются на наблюдательные проявления черных дыр общей теорией относительности, выполняются.А. Г. Тогда почему вы говорите, что мы имеем объекты, похожие на черные дыры, а не черные дыры?А. Ч. Потому что выполняются только необходимые условия. Достаточных критериев отбора черных дыр пока нет, потому что, в отличие от нейтронных звезд, где есть вращение, магнитное поле, феномен пульсара, я об этом чуть позже скажу, у черных дыр нет специфических эффектов, которые можно наблюдать, специфичных для самих черных дыр. Мы судим о том, что это черные дыры по отсутствию пульсара, по отсутствию вспышек, и так далее. А отсутствие какого-либо признака не является достаточным критерием наличия этого объекта. Присутствие признака это доказательство, а отсутствие – это только необходимое условие. Но поскольку объектов уже свыше ста, то можно сказать, что с очень большой вероятностью черные дыры открыты, они почти открыты. Тем не менее будущее за специальными экспериментами, в том числе и космическими, которые докажут существование черных дыр, потому что они позволят наблюдать эффекты специфичные для черных дыр, наблюдать с высоким угловым разрешением порядка десять в минус седьмой угловой секунды дуги, так называемый рентгеновский интерферометр космический. В 2010 году он будет запущен. </p><p>Итак, значит, как образовать черную дыру? Возьмем Землю и будем сжимать ее сферическим прессом. Вот когда мы в четыре раза уменьшим радиус Земли, то вторая космическая скорость уже будет не 11 километров в секунду, а 22 километра в секунду у Земли. Если мы еще будем дальше сжимать Землю и сожмем ее до 9 или 8 миллиметров, то вторая космическая скорость будет равно 300 тысяч километров в секунду. Так мы получим черную дыру, тогда уже пресс не понадобиться, Земля будет сама сжиматься под горизонт событий, и образуется черная дыра с массой, равной массе Земле и гравитационным радиусом 9 миллиметров. Но реально в природе такого пресса, конечно, нет, и роль этого пресса играет гравитация, именно поэтому черные дыры образуются при коллапсе ядер массивных звезд, у которых гравитация достаточно сильна, чтобы сжать вещество в черную дыру до необходимой плотности, до размера гравитационного радиуса. </p><p>И эволюция звезд происходит таким образом, что звезды с массой меньше полутора масс Солнца... Я имею в виду не всю звезду, а центральную часть звезды, которая проэволюционировала, которая уже имеет химическую неоднородность, потому что внешняя оболочка звезды (до 50 процентов массы) может быть потеряна под давлением излучения в виде звездного ветра. В двойной система из-за приливных эффектов оболочка может быть потеряна. А вот ядро звезды, которая проэволюционировала, которая имеет анамальный химсостав уже, образует нам остаток от звезды, и если масса этого ядра меньше, чем одна и четыре десятых массы Солнца, то образуется белый карлик. Белый карлик – это звезда радиусом порядка радиуса Земли в 10 тысяч километров, с массой порядка массы Солнца и плотностью порядка тонна в кубическом сантиметре, то есть наперсток вещества белого карлика весит тонну. Таких белых карликов очень много, примерно десять миллиардов штук в нашей галактике, которая сто миллиардов звезд содержит вот десять миллиардов из них белые карлики. Если же масса ядра звезды в конце эволюции больше, чем одна и четыре десятых массы Солнца, но меньше трех массы Солнца, то уже в результате сжатия этого ядра образуется нейтронная звезда. Нейтронная звезда это такой объект, который удерживается от сжатия давлением так называемого вырожденного нейтронного вещества. Нейтроны обладают полуцелым спином, и согласно принципу Паули, в одном энергетическом состоянии может находиться один нейтрон. Из-за этого статистика распределения нейтронов по энергиям описывается уже уравнением Ферми-Дирака. Это вырожденное вещество, давление зависит только от плотности, не зависит от температуры, и нейтронная звезда удерживается от сжатия давлением вырожденного нейтронного вещества.Д. Г. Такие огромные объекты, как белые карлики и черные дыры, на самом деле являются квантовыми по своим свойствам. Это огромные такие квантовые макроскопические объекты.А. Ч. Белых карликов десять миллиардов в нашей галактике, и все они, по сути, квантовый эффект, то есть это доказательство квантовой механики. Нейтронных звезд примерно десять миллионов в нашей галактике, ну, сто миллионов будем считать, десять в восьмой, и тоже каждая из нейтронных звезд – это есть торжество квантовой механики. И вот если масса центрального ядра звезды больше, чем три массы Солнца, то гравитационное поле будет таким сильным, как в примере с прессом для Земли, что гравитационное поле может сжать вещество звезды до таких плотностей, до таких маленьких размеров, что образуется черная дыра. Черные дыры должны иметь массу больше трех масс Солнца, если они происходят естественным образом в результате окончания эволюции звезды. Но нижний предел массы черной дыры может достигать даже примерно одной и восемь десятых массы Солнца; это зависит от так называемого уравнения состояния вещества нейтронной звезды, то есть связи между давлением и плотностью. Но максимальная масса нейтронной звезды, соответствующая предельно жесткому уравнению состояния, это три массы Солнца. </p><p>Поэтому задача наблюдателей очень простая: надо найти объекты, масса которых больше трех масс Солнца и радиусы которых равны гравитационному радиусу. Для черной дыры с массой десять масс Солнца, а это типичная масса звездной черной дыры, гравитационный радиус это 30 километров. Если массу мы можем измерить по движению второй звезды в двойной системе или по движению газовых облаков и звезд вблизи сверхмассивной черной дыры в ядре галактике, то измерить радиус в 30 километров, измерить на расстоянии, скажем, тысячи световых лет практически очень трудно, но тем не менее сейчас астрономы даже такие задачи собираются решать. Например, можно будет измерить радиус ядер черных дыр в ядрах галактик с помощью космических интерферометров. </p><p>Итак, задача – померить массу объекта, показать, что его размер близок к гравитационному или, еще лучше, равен гравитационному, и, наконец, надо показать, что у объекта нет наблюдаемой твердой поверхности, а имеется вот этот горизонт событий. Горизонт событий – это не какая-то поверхность. Горизонт событий может быть устранен выбором системы отсчета. Если мы сядем на космический корабль и будет свободно падать, то мы попадем в сингулярность и не почувствуем никакого горизонта событий. То есть это такая поверхность, которая зависит от системы отсчета, с которой мы на нее смотрим, это не твердая поверхность вот это надо тоже доказать. Ну, и, кроме того, черные дыры, которые сформировались в наше время, не стопроцентные черные дыры. Сжатие вещества согласно общей теории относительности – коллапс происходит бесконечно долго для внешнего наблюдателя и из-за замедления хода времени. Но уже в первые миллисекунды времени звезда приближается очень близко к своему гравитационному радиусу, а дальше она приближается экспоненциально к своему гравитационному радиусу, и ей нужно прождать все бесконечно большое время нашей Вселенной, чтобы она окончательно сформировала свой горизонт событий.А. Г. А что значит "не наше время"? Вы сказали, что черные дыры, которые образуются в наше время, не совсем черные дыры.А. Ч. Черные дыры, которые сформировались в нашу эпоху. Ну, например, система Лебедь Х-1. Примерно десять миллионов лет тому назад там был взрыв сверхновый, и образовалась черная дыра. Но что такое десять миллионов лет по сравнению с возрастом нашей Вселенной – это очень маленький промежуток. И за эти десять миллионов лет у черной дыры системы Лебедь Х-1 сформировался уже горизонт событий почти на сто процентов, но все-таки не на сто процентов: нужно еще много-много миллиардов лет подождать для того, чтобы горизонт событий сформировался окончательно. На самом деле, это отличие очень мало согласно экспоненциальному закону. И за очень короткое время, за доли секунды, когда нейтронная звезда коллапсирует в черную дыру, для внешнего наблюдателя это уже будет невидимый объект, это будет...А. Ч. Это будет практически черная дыра. Поэтому мы сейчас ищем так называемые практически черные дыры, имеющие практически горизонты событий. Горизонт событий тоже ненаблюдаем, потому что там время бесконечно растягивается и любые процессы там замирают они там ненаблюдаемы. И поэтому это ненаблюдаемая поверхность какие бы там процессы ни были, мы их не можем заметить. </p><p>Итак, по каким признакам наблюдатели сейчас начали мерить черные дыры? В 64-м году, задолго до эры рентгеновской астрономии, которая и позволила открыть черные дыры, академик Зельдович Яков Борисович и американский ученый Салпитер опубликовали две фундаментальные работы. Они показали, что если на черную дыру падает... Сама черная дыра невидима, потому что даже свет не может вырваться за ее пределы, но, если на черную дыру выпадает вещество не сферически симметричное, это очень важно: тогда вещество при выпадении на черную дыру достигает скоростей близких к скорости света и происходит столкновение газовых струй. Для этого и нужна несферическая симметрия. Естественно, если вы молотком бьете по наковальне, она нагревается до 5-10 градусов. А здесь у вас скорости столкновения это скорость света, 300 тысяч километров в секунду, поэтому плазма нагревается в ударных волнах до температур в сотни миллионов градусов и выделяется огромная энергия в рентгеновских лучах, в тех самых рентгеновских лучах, которыми нас просвечивают в медицинских кабинетах. Это электромагнитные колебания очень короткой длины волны, порядка один ангстрем, а обычное оптическое излучение это пять тысяч ангстрем. Итак, жесткое электромагнитное излучение. К сожалению, земная атмосфера, а может быть и к счастью, для этого излучения непрозрачна; и только когда началась эра космических исследований после запуска первого советского искусственного спутника Земли, появилась возможность наблюдать из космоса, за пределами земной атмосферы, рентгеновские источники. И вот еще до начала эры рентгеновской астрономии вышли две эти работы Зельдовича и Салпитера в 64-м году... Хотя первый рентгеновский источник был открыт с борта ракеты в 62-м году, с ракеты "Аэроби", американской, кстати, одним из экспериментатором в этом проекте был Рикардо Джиакони, который в прошлом году получил Нобелевскую премию за рентгеновскую астрономию.</p><p>А начало эры рентгеновской астрономии связывают с 71-м годом, с запуском специализированного спутника "УХУРУ". Это на языке одной из африканских народностей означает "свобода". Этот специализированный спутник сканировал все небо и открыл несколько сотен рентгеновских источников. И возникла проблема их оптического отождествления. Если это двойная система... А вот как раз теория аккреции вещества на черные дыры в двойных системах была развита уже несколько лет спустя учениками Якова Борисовича Зельдовича это Шакура и Щуняев, Новиков и Торн, Прингл и Рис и другие. Они показали, что если имеется двойная система, черная дыра и звезда типа Солнца, тогда перетекание вещества от оптической звезды на черную дыру приводит к формированию диска. В диске тоже скорости в центре близки к скорости света, и просто из-за взаимного трения слоев происходит разогрев до температур в сотни миллионов градусов, и мы видим рентгеновский ореол вокруг черной дыры, сама черная дыра не видна, но ореол в рентгеновских лучах виден. Но вторая звезда не только является донором вещества она является пробным телом, по движению которого можно определить массу, используя законы Ньютона, и поэтому рентгеновская и оптическая астрономии прекрасно дополняют друг друга. Со спутника мы наблюдаем мощный рентгеновский поток, который говорит о том, что есть компактный объект с радиусом меньше радиуса Земли (это экспериментально измеренная величина) и с массой больше трех масс Солнца (то, что мы по оптической звезде меряем), а наземные наблюдения, обычные, оптические наблюдения с поверхности Земли, позволяют как раз изучать движение оптической звезды и мерить массу невидимого рентгеновского источника.А. Г. Но при этом могут же возникать всякие неожиданности, скажем, система может оказаться не двойном, а тройной, черных дыр может оказаться не одна, а две...А. Ч. Чтобы двойная система была устойчива, нужна иерархическая модель. Если третья звезда есть, она должна быть далеко, иначе система распадется это задача трех тел получается. Вот чтобы была ограниченная задача трех тел, нужна, скажем, двойная система, а третий объект очень далеко; в этом можно разобраться, все это можно распутать.</p><p>Но хочу подчеркнуть, тут вы правы, что двойная система видна как точка, то есть не видно отдельно ни черную дыру в рентгене, ни оптическую звезду; потому что размер орбит там порядка несколько радиусов Солнца, а расстояние тысячи световых лет, поэтому мы видим точку. Но в оптическом диапазоне эта точка мигает с орбитальным периодом, мы меряем ее изменения. Измеряя спектр по доплеровским смещениям линии, можно померить так называемую кривую лучевых скоростей, то есть проекцию оптической скорости звезды на луч зрения. И вот это кривая изменения лучевых скоростей несет информацию о массе, а кривая блеска несет информацию о наклоне орбиты двойной системы; и таким образом оптические и рентгеновские наблюдения позволяют определить массу объекта и дать ограничения на радиус, что радиус меньше радиуса Земли. </p><p>Более тонкие ограничения на радиус даются по быстрой переменности. Рентгеновские излучение от многих аккрецирующих черных дыр (на которых выпадает вещество) переменно на временах до одной миллисекунды. Если мы возьмем десять в минус третьей секунды, умножим на триста тысяч километров в секунду (скорость света), то мы получим триста километров, это десять гравитационных радиусов. А идея такая, что если у нас объект со временем переменности одна миллисекунда, значит, его размеры не могут существенно превышать величины С на дельту Т, где дельта Т одна миллисекунда. Известно, что планеты не мерцают, потому что их угловые размеры минута, а звезды мерцают, потому что у них очень маленькие угловые размеры, и когда свет звезд проходит через земную атмосферу, он быстро преломляется и искажается. А у планеты от каждой точки происходит искажение света. Все это осредняется, и планета светит не мигая. И тоже самое можно сказать о быстрой перемененности: если объект имеет очень маленький размер, он может иметь быструю переменность; если он имеет большие размеры, переменность от разных точек объекта будет усредняться и не будет большой переменности. Поэтому по быстрой переменности можно сказать о радиусе центрального объекта. </p><p>Итак, мы сегодня уже имеем два десятка черных дыр с известными массами и известными радиусами и примерно столько же нейтронных звезд с известными массами и с известными характеристиками. И удивительная вещь – для всех этих сорока так называемых релятивистских объектов (20 черных дыр и 20 нейтронных звезд), для всех этих объектов все предсказания общей теории относительности выполняются. Нейтронная звезда, если она имеет наблюдаемую поверхность признаком наблюдаемой поверхности является быстрая короткопериодическая и строго периодическая переменность, нейтронная звезда обычно имеет сильное магнитное поле быстро вращается. Потому что мы сжимаем звезду радиусом миллион километров до размера десять километров. Десять километров это радиус нейтронной звезды. Наперсток вещества нейтронной звезды весит миллиард тонн, то есть имеет огромная плотность. По сравнению с золотым слитком, который у вас здесь есть, это гораздо более тяжелое вещество. Кроме того, нейтронная звезда за счет сжатия быстро вращается. </p><p>Если мы возьмем Солнце и сожмем до десяти километров, то скорость вращения нейтронной звезды будет одна миллисекунда, а период вращения Солнца месяц. Точно также и магнитное поле: у Солнца один Гаусс, а если мы сожмем Солнце до десяти километров, то из условия сохранения магнитного потока магнитное поле возрастет до десяти в десятой Гаусс. Наличие магнитного поля и быстрого вращения приводит к феномену пульсара. Либо в радиодиапазоне, либо в рентгеновских лучах мы наблюдаем строго периодические импульсы излучения; их фазы держатся на протяжении десятков лет, а период одна секунда примерно. Период секунда, а фаза колебаний держится десятки лет. Это говорит о том, что есть твердая поверхность у объекта; и вот у всех двадцати объектов, которые мы наблюдаем, которые показывают наблюдательные проявления твердой поверхности, у них масса не превышает трех масс Солнца в полном соответствии с предсказанием общей теории относительности. Это для двадцати объектов уже.</p><p>А для других двадцати объектов, у которых масса больше трех масс Солнца, не наблюдается феномен рентгеновского или радиопульсара, то есть не наблюдается явных признаков наблюдаемой поверхности. Но поскольку мы по отсутствию этих эффектов судим, то это не является доказательством того, что это черные дыра. Но поскольку число объектов уже 20 штук и ни для одного из них наблюдаемых свидетельств твердой поверхности нет, то теперь уже астрономы и физики называют эти объекты не "кандидаты в черные дыры", а черными дырами. Вот так обстоят дела с черными дырами звездной массы.</p><p>Но еще более интересно обстоят дела с сверхмассивными черными дырами в ядрах галактик...</p><p>Вы хотели мне задать какой-то вопрос?А. Г. Нет, я снимаю тот вопрос. Расскажите, как образуется сверхмассивные черные дыры?Д. Г. Это второй вид черных дыр, которые хорошо предсказаны теоретически и которые наблюдаются, может быть, еще более убедительно, чем черные дыры звездной массы. Но дело в том, что ядра галактик при входе эволюции могут придти в состояние, когда некоторая большая масса оказывается под собственным гравитационным радиусом, и тогда уже образуется дыра. Но это не один объект, а это как бы газ, который совместно образует такой объект, и надо сказать, что гравитационный радиус там столь велик, что...А. Ч. Порядка солнечной системы, то есть порядка сорока астрономических единиц.Д. Г. Средняя плотность вещества там очень невелика, и скажем, человек, который пересекает гравитационный радиус, космонавт, он останется жив, там гравитационное поле не столь велико, чтобы его погубить.А. Ч. Средняя плотность меньше плотности воздуха у сверхмассивных черных дырах. Поэтому есть шанс в такую черную дыру попасть...Д. Г. На космическом корабле.А. Ч. И какое-то время, еще несколько мгновений, успеть увидеть будущее...А. Г. Потому что времени знак меняется...Д. Г. Обнаружение этих объектов также стало возможным благодаря новой рентгеновской технике и в особенности будущей техники...А. Ч. Рентгеновский интерферометр...Д. Г. Рентгеновский интерферометр позволит действительно уже измерить реальные гравитационные параметры...А. Г. Хорошо, тогда вот какой вопрос. Что касается природной лаборатории, более или менее понятно. Но вот вы уже описали эксперимент, который можно было бы провести, если бы у нас был такой сферический пресс, который развивал бы необходимое давление. Но вы также указали, что объекты эти квантовые?А. Ч. Да.А. Г. Нельзя ли поставить дикий эксперимент, учитывая квантовую природу этих объектов, по созданию такой черной дыры в лабораторных условиях?Д. Г. Это одно из предложений, которые существуют, правда, в рамках не эйшнейновской теории, а той гипотезы гипербранной вселенной, которая сейчас развивается. Собственно, гипотеза состоит в том, что наша вселенная на самом деле является некоторой поверхностью, вложенной в пространство большего числа измерения хотя бы одно лишнее измерение для этого нужно иметь. Так вот сама модель была предложена в каком-то смысле как игрушечная модель, просто исходя из возможностей ее проверки. Такая проверка в ближайшие годы будет возможна на ускорителях, которые работают при энергии десять в третьей Гэв или Тэв, это уже очень большие энергии, они существенно превышают те, которые задействованы в стандартной модели и пока мы ничего не знаем, что там может происходить. Так вот, предположение о том, что на самом деле есть пятое измерение, причем это измерение не маленькое, планковских масштабов, как это давно уже предлагалось, а большое, скажем, миллиметры или доли миллиметра, как выясняется, это предположение не противоречит ни гравитационным экспериментам, ни наблюдениям, ни физике элементарных частиц более того, оно позволяет решать ряд проблем именно в теории элементарных частиц. </p><p>Так вот, на тэвном ускорителе при подборе параметров нет противоречий с существующими данными, а есть даже соблазнительная возможность объяснить темную энергию, о которой много говорят. Это то, что сейчас наблюдается во вселенной, маленькое значение космологической постоянной, то есть существовании энергии совершенно специфического вида. Так вот оказывается, что масштаб очень хорошо согласуется с предположением об этом субмиллиметровом характере дополнительных измерений. Но это, конечно, одно из предположений, вовсе не доказательство.</p><p>Так вот что происходит. Если две такие элементарные частицы, разогнанные на ускорители до энергии порядка Тэв, сталкиваются между собой с прицельным параметром в десять минус 17-й сантиметра, что вполне реально, то частица оказываются под своим гравитационным радиусом с точки зрения этой теории, потому что там масштабы изменены на много порядков.А. Ч. Не десять в минус 33...Д. Г. А 10 в минус 17-ой это уже радиус черной дыры в этой теории. Тогда что должно происходить? Образуется микроскопическая черная дыра, причем она будет сильно вращаться, потому что частицы сталкиваются навстречу друг другу. И по Хокингу она должна испарятся, у нее есть температура, и она уже с определенной вероятностью излучает частицы, спектр этот посчитан с хорошей точностью и, в общем, по наблюдению спектра можно сделать вывод о таком событии.</p><p>Но вообще-то такие термодинамические события при столкновении частиц высоких энергий наблюдались и раньше, но они никак не имели никакого отношения к гравитации, к эффекту Хокинга. Это просто за счет действительно большой концентрации энергии в малом объеме начинают уже проявляться статистические закономерности. Здесь несколько другое. Но вот что любопытно. Как это может быть наблюдено? Одно из предсказаний, недавно сделанных известным специалистом по черным дырам Фроловым, состоит в том, что при испарении такой черной дыры она будет испаряться, в частности, и в дополнительное измерение, вот в это пятое измерение, и может быть эффект отдачи. Вот, скажем, есть какая-то достаточно энергичная частица, которую испускает черная дыра, возникает эффект отдачи, и черная дыра может уйти в противоположную сторону, в это самое пятое измерение; тогда она исчезает из нашего мира и таким образом теряется часть энергии, которую она не успела испарить...А. Ч. Нарушается формальный закон сохранения энергии в нашем, четырехмерном пространстве.Д. Г. Вот такого рода события, действительно, предлагается искать на ускорителях, и эти опыты будут проведены в ближайшие годы. Конечно, мало кто верит, что это действительно будет наблюдено, потому что все же модель выглядит слишком фантастично даже с точки зрения той теории черных дыр, о которой мы говорим и ее астрофизических предсказаниях, которые теперь уже вроде бы всеми воспринимаются как вполне реальные. Здесь, конечно, все гораздо более гипотетично.А. Г. У меня вот какой вопрос. Я понимаю, что, будучи сторонним наблюдателем и пытаясь проследить эволюционный процесс, происходящий внутри черной дыры, самой черной дыры, мы до многого недосмотримся, потому что время для нас будет тянуться бесконечно. Но если мы окажемся за горизонтом событий, чем заканчивается жизнь черной дыры, во что она эволюционирует потом, если можно задавать такой вопрос?Д. Г. Да, это то, что называют в теории относительности проблемой сингулярности, и надо сказать, что она не решена. Предполагают, что в будущей теории квантовой гравитации ее проблема будет разрешена. Но, действительно, проблема существует. С одной стороны, действительно, наблюдаемые свойства черных дыр не имеют к этому никакого отношения. За наше время наблюдений образовалось во вселенной черная дыра по нашим часам она ведь так и не сколлапсировала в эту сингулярность, тело колапсирует до гравитационного радиуса, поэтому для нас никаких проблем нет.А. Ч. То есть действует принцип космической цензуры. Сингулярность от нас скрывается.Д. Г. Это одна из тех парадоксальных вещей, которые до сих пор вызывают большое сопротивление у многих ученых.А. Ч. Многие не верят в существование черных дыр, приходится доказывать наблюдения свидетельствуют, что черные дыры скорее всего есть.Д. Г. С другой стороны, есть тот наблюдатель, который находится на поверхности это тоже физика, это не какой-нибудь мысленный эксперимент. Пожалуйста, нужно уметь объяснить и что с ним будет происходить. Ясности в этом вопросе нет. Есть некоторые модели в теории суперструн, когда сингулярность сглаживается, но они, как правило, относятся к таким малым масштабам и к таким расстояниям, что применить их к реальным астрофизическим черным дырам пока никто не пытался. Так что, наверное, здесь мы вряд ли сможем дать какую-то наглядную картину, что же там происходит.</p><p>Есть точка зрения, что и в будущей квантовой теории сингулярности тоже должны остаться, потому что их полное отсутствие, сглаживание таких вот особенностей, оно порождает другие проблемы. Ну, например, есть проблема квантовой когерентности. В квантовой механике все предсказывается вероятностным образом, но вот сама эта вероятность, она в некотором смысле полна, то есть всегда полная вероятность всех событий должна быть сто процентов. Так вот, если есть черная дыра и если она такой вполне регулярный объект и никакой там сингулярности нет...А. Ч. В центре черной дыры...Д. Г. Да. И все равно будут нарушения из-за горизонта событий, и черная дыра – она образуется в результате колапса, потом испаряется она нарушает этот процесс квантовой когерентности. Поэтому здесь пока не все понятно, может быть, сингулярности как раз здесь и играют определенную положительную роль. </p><p>Другая квантовая проблема с черными дырами связана с тем, что энтропия, мы знаем, имеет геометрическое происхождение, но вместе с тем она должна иметь и какое-то микроскопическое происхождение. Проблема в этих состояниях, когда почему-то энтропия равна площади поверхности горизонта события, то есть является поверхностным эффектом, а не объемным. Если бы мы исходили из обычной физики, то мы как раз бы ожидали, что будет что-то пропорциональное объему черной дыры, а не ее поверхности. Вот это породило еще некоторые гипотезы, называемые принципом квантовой голографии: может быть, гравитация действительно такова, что она существует в пространстве большего числа измерений, чем другая квантовая теория какая-то квантовая теория, которая есть на поверхности черной дыры, а гравитация трехмерна. Таких соответствий сейчас уже обнаружено много не только в черных дырах, но и в космологических пространствах с горизонтами, в пространствах антидеситтра.</p><p>Короче говоря, физика черных дыр послужила мощным стимулом развития квантовой физики, и развития представлений в квантовой гравитации, и вообще в объединенных моделях всего.А. Г. Вы сказали, что приходится доказывать существование черных дыр, то есть скептики есть. А как эти скептики объясняют эти видимые эффекты в парных системах, если с их точки зрения это не черная дыра?А. Ч. Это могут быть какие-то объекты, имеющие поверхность, но не имеющие магнитного поля, не имеющие быстрого вращения, которые не дают нам наблюдательных признаков поверхности.А. Г. А что это за объекты?А. Ч. Есть теория гравитации, которая предсказывает существование объектов, которые могут иметь наблюдаемую поверхность, будучи компактными. Такие теории критикуются физиками с точки зрения основных принципов, но, тем не менее, они имеют право на существование. Для нас, наблюдателей, наличие таких теорий являются дополнительным стимулом; нам интереснее искать черные дыры, потому что есть разнообразие возможностей. </p><p>Но я хотел бы еще два слова сказать о сверхмассивных черных дырах, которые еще более убеждают нас в том, что черные дыры существуют. Я уже говорил, что наблюдаются два десятка черных дыр звездной массы, все наблюдательные свойства которых согласуются с общей теорией относительности; и есть уже около сотни сверхмассивных черных дыр в ядрах галактик. Масса их меряются по движению звезд вблизи ядра. Например, у нашей галактики с помощью специальных методов в инфракрасном диапазоне удалось померить движение отдельных звезд. Орбиту построить, орбиту звезды. Три миллиона солнечных масс – это ядро нашей галактики, и звезда (десять масс Солнца), которая на эллиптической орбите вокруг этой черной дыры ходит, двигается. И можно точно измерить массу ядра нашей галактики это три миллиона солнечных масс. А радиус меньше двадцати гравитационных радиусов, и доказано, что это не может быть скоплением тел, а это единое тело радиусом меньше 20 гравитационных радиусов. Если это не черная дыра, то что это такое? Вот. Конечно, эта черная дыра в нашей галактике, несмотря на то, что она черная дыра, она не влияет на нас, потому что расстояние до нее очень велико, восемь килопарсек, то есть примерно 24 тысячи световых лет, свет идет 24 тысячи лет от этой черной дыры. И на таких больших расстояниях влияние черной дыры эквивалентно нормальной массе; и не надо опасаться, что наша черная дыра поглотит нас и так далее. Так что наша галактика имеет черную дыру. И есть четкая коррелляция: чем больше масса так называемого балджа галактики... Это старое звездное население галактики, которое сохранилось еще со времен образования галактики: у галактики есть спирали, молодые звезды, с возрастом десятки, сотни миллионов лет, и балдж галактики это старые звезды с большими скоростями, возраст которых многие миллиарды лет. Так вот, чем больше масса наблюдаемого балджа галактики, тем больше масса центральной черной дыры. Сейчас просто по виду галактики можно сразу сказать, какая масса центральной черной дыры. И люди приходят к выводу, что практически каждая галактика имеет в своем центре сверхмассивную черную дыру. И вот когда мы наблюдаем снимок с космического телескопа "Хаббл" это много-много галактик, то фактически мы видим черные дыры. Только масса черной дыры составляет от одной десятой процента до примерно одной тысячной процента от всей массы звездного населения галактики.А. Г. Эта сверхмассивная черная дыра, которая находится в центре нашей галактики, это ближайшая к нам черная дыра?А. Ч. Это ближайшая к нам сверхмассивная черная дыра. Остальные находятся в центрах других галактик, например, в Туманности Андромеды в центре галактики. Примерно сто миллионов солнечных масс, в сто раз более массивная черная дыра, чем у нас.А. Г. А ближайшая к нам черная дыра звездной массы?А. Ч. Ближайшая черная дыра звездной массы на расстоянии примерно один килопарсек, это примерно три тысячи световых лет. То есть тоже не надо бояться, это очень далеко и масса ее всего десять масс Солнца, а не три миллиона масс Солнца. Гравитационное поле черной дыры на больших расстояниях много больше, чем гравитационный радиус оно подчиняется Ньютоновскому закону, обычному Ньютоновскому закону, так что ничего бояться не надо. А то иногда бывают в прессе такие штучки...А. Г. Черные дыры как пылесосы, которые засосут...А. Ч. На больших расстояниях она ничего не сделает. Только когда мы приближаемся к гравитационному радиусу, там уже начинается сказываться специфические эффекты в общей теории относительности.А. Г. Эволюция звезд может привести к тому, что количество черных дыр будет все большим и большим?А. Ч. Так вот, если эти 20 черных дыр взять, и учесть все эффекты наблюдательной селекции, и пересчитать, то получается, что в нашей галактике примерно десять миллионов черных дыр. И масса, заключенная в виде черных дыр, составляет примерно одну десятую процента от массы всей видимой материи нашей галактики. Это немало, одна десятая процента.А. Г. Но она будет расти?А. Ч. Она со временем будет расти. Но не очень сильно, потому что в черные дыры превращаются наиболее массивные звезды, а их как раз немного. Звезды, в основном, в Галактике с массой, близкой к массе солнца, а чем больше масса звезды, тем их относительно этих звезд меньше. Так что абсолютная масса вещества в виде черных дыр будет расти, но доля по отношению к звездной компании всегда будет не более одной десятой процента, скорее всего. Но одна десятая процента это очень большое количество вещества. Мы имеем сейчас несколько агрегатных состояний: есть жидкая форма, газообразная и так далее... Черные дыры – это отдельная форма существования вещества...

gordon: Нейробиологические механизмы агрессии �

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Наталия Николаевна Кудрявцева– доктор биологических наук</li></ul><p><strong>Наталия Кудрявцева: Хорошо известно, что внутривидовая агрессия – это базовая форма поведения, которая встречается у животных, находящихся на различных ступенях эволюционной лестницы, от насекомых до приматов. Как правило, агрессия демонстрируется животными в угрожающих условиях, при защите территории доминирования, в борьбе за самку, пищу, среду обитания. Кроме того, с помощью агрессии устанавливаются доминантно-субординантные отношения, формирование которых является эволюционно адаптивным, поскольку доминирующее положение, как правило, занимают самые сильные и самые приспособленные особи. И именно они оставляют потомство. Таким образом, поддерживается рождение тех животных, которые выживут в данных условиях среды. Все это свидетельствует о том, что агрессия играет позитивную роль в эволюции вообще и в жизни отдельной особи, в частности, позволяя ей сохранить жизнь и освоить жизненные пространства. И поэтому Конрад Лоренц, основатель науки этологии, много писавший об агрессии у животных, назвал свою книгу "Агрессия, так называемое зло". Это "зло", которое дано животному во благо, потому что с помощью агрессии животное может отстоять свое право на существование в окружающей среде. Однако внутривидовая агрессия встречается довольно редко, и встретить кровавые сцены агрессии у самцов в природе практически не представляется возможным, поскольку агрессия блокируется уже на ранних этапах взаимодействия особей. Запах, вид, партнера, его поведение способствуют тому, что агрессия не проявляется. Происходит дистантная оценка возможностей и намерений друг друга. Часто достаточно угроз – у мышей, например, это вибрация хвостом, – чтобы агрессия у партнера прекратилась, не начавшись. И особи, как правило, расходятся в разные стороны, не проявив агрессивного поведения. Причем, в каждой конкретной ситуации и поведенческом контексте, механизм, приводящий к блокаде агрессии, может быть разным. </p><p>Общепринятым является представление о том, что агрессия провоцируется только определенными условиями среды и не является сущностью данного индивида, данного животного. Во всех случаях необходима провокационная среда, конфликтная ситуация, в которой развивается агрессивное поведение.Александр Гордон: "Только от жизни собачьей собака бывает кусачей"... Н.К. Да, по-видимому, так. Лоренц рассматривал агрессию как инстинкт, сходный пищевому и половому инстинктам. Предполагал, и даже находил свидетельства тому, что в организме спонтанно и постоянно продуцируется агрессивная энергия, которая рано или поздно должна находить выход. И потому возникает и всегда находится повод для ее разрядки. И развивая эту мысль, он говорил о том, что войны и агрессия неизбежны в человеческом обществе. Однако, многие исследователи, работавшие в области агрессологии, эти представления Лоренца о спонтанном продуцировании агрессивной энергии критиковали, утверждая, что нужна провокационная среда и видоспецифические стимулы, запускающие проявление агрессии. У мышей это феромоны, запахи других самцов. У птиц это визуальные стимулы. Агрессия возникает, если расстояние между птицами меньше их размаха крыльев. Агрессия часто возникает при скученности животных, нарушении каких-либо стабильных условий существования.</p><p>Но если пусковые стимулы, запускающие агрессивное поведение у представителей разных видов, как показывают некоторые исследования, разные, то механизмы регуляции агрессивного поведения во многом сходны. </p><p>Контроль агрессивного поведения сложен. И от многих физиологических и нейрохимических составляющих зависит характер и выраженность протекания агрессии в провоцирующей среде. В частности, запускают агрессивное поведение сенсорные стимулы. Это значит, что некоторые особенности их восприятия могут повлиять на проявление агрессивного поведения. Особенности обоняния, зрения, особенности болевых ощущений или тактильного восприятия. Например, есть агрессия, вызванная болью или раздражительностью, когда животное отвечает агрессивной реакцией в ответ на болевое, тактильное или какое-либо другое воздействие. И если у индивида снижен порог болевой чувствительности или раздражительности, то есть вероятность, что эти виды агрессии у него разовьются быстрее, чем у той особи, у того индивида, у которого этот порог повышен. </p><p>Кроме того, некоторые общие свойства нервной системы, по Небылицыну, это эмоциональность и активность – могут влиять на возникновение и течение агрессивного поведения. Одно из определений эмоциональности – это способность индивида развивать реакцию страха в угрожающих условиях, которая может тормозить или стимулировать у особей проявление агрессии. В последнем случае этот вид агрессии, называется агрессией, вызванной страхом. Под активностью имеется в виду не просто двигательная активность, это может быть активность и на мыслительном уровне, и исследовательская активность, отражающие особенности реагирования на окружение и события. Полагают, что активность также оказывает влияние на проявление агрессивного поведения, например, "механически". Активное животное, активный индивид, чаще попадает в ситуации, в которых может развиться конфронтационное взаимодействие. Однако, как полагают, между агрессивностью и активностью существует не только "механическая связь", но и внутренняя. Известно, например, что отбор на агрессивный тип поведения сопровождается и повышением двигательной активности у этих животных в процессе селекции. </p><p>Большое значение на проявление агрессии оказывает гормональный фон, на котором разворачивается или не разворачивается агрессивное поведение при наличии провоцирующей ситуации. Я хочу все время подчеркнуть, что должна быть провоцирующая ситуация, должен быть определенный социальный контекст, формирующий агрессивную мотивацию. </p><p>Общепризнано, что мужской половой гормон тестостерон, который у мужских особей присутствует в существенно больших количествах, чем у женских, является гормоном агрессии. Существует множество доказательств того, что тестостерон необходим для внутривидовой агрессии: физическую агрессию, в основном, проявляют самцы. Известно, что кастрация животных снижает, а чаще полностью блокирует проявление агрессии. Введение тестостерона таким животным ее восстанавливает. Введение тестостерона самкам, которые в норме не агрессивны, вызывает у них проявление агрессии. У дзюдоистов было найдено, что чем выше уровень тестостерона, тем больше атак по отношению к своему партнеру спортсмен проявляет.</p><p>Однако есть данные, противоречащие представлению о позитивной корреляции между уровнем тестостерона и уровнем агрессивности, присущей мужскому индивиду. У дзюдоистов было отмечено, что уровень тестостерона повышался после борьбы только в том случае, если были успех и победа. То есть повышенный уровень тестостерона обусловлен скорее социальным успехом, чем влиянием агрессии. Полагают, что эта взаимосвязь может быть обусловлена взаимосвязью между социальным и репродуктивным успехом, по крайней мере, в популяции: повышенный уровень тестостерона у доминанта скорее вызван его репродуктивным опытом, а не агрессивностью, поскольку хорошо известно, что в популяции со стабильными иерархическими взаимоотношениями агрессия возникает редко, поскольку подчиненные животные избегают конфликтных ситуаций. </p><p>Гормоны стресса также влияют на проявление агрессии, хотя уровень стрессированности особи и агрессивность также связаны неоднозначно. Сильный стресс, особенно хронический, снижает уровень тестостерона, и значит, снижает агрессивность. Однако, проявит ли особь агрессию в данной конкретной ситуации зависит, в первую очередь, от ее предыдущего социального опыта – негативного или позитивного. </p><p>Хорошо известно, что уровень агрессивности наследственно обусловлен. Об этом свидетельствует разная выраженность агрессивного поведения у линейных животных. Об этом свидетельствует возможность селекции на высокий и низкий уровень агрессивности. Показан различный характер наследования уровня агрессивности при скрещивании животных. В исследованиях на нокаутных животных с отсутствием какого-либо гена показано, что как минимум 17 генов участвуют в регуляции агрессивного поведения: их отсутствие снижает или увеличивает агрессивность особей. То есть, можно говорить о полигенном характере наследования.</p><p>Результаты изучения нейрохимических механизмов агрессии свидетельствуют об участии как минимум, 5-6 медиаторных систем головного мозга в регуляции и в контроле агрессивного поведения. Воздействуя на каждую из этих систем определенным образом, например, фармакологически, можно изменить, запустить или полностью ингибировать агрессивное поведение.</p><p>Надо сказать, что в последние 30 лет преобладает серотонергическая теория агрессии, которую поддерживает много исследователей. Полагают, что одним из основных веществ, которое выполняет роль ингибитора агрессии в организме, является серотонин. И действительно, когда мы вводим вещества, которые активируют серотонергическую систему, агрессия снижается. И наоборот, если снижать активность этой системы тем или иным способом, агрессия увеличивается.А.Г. Фармакологически снижаете активность?Н.К. ...Да, и фармакологически. Одно время было даже такое направление исследований, как поиски препаратов на серотонинпозитивной основе, снижающих проявление агрессии. </p><p>Но снизить или повысить уровень агрессивности можно воздействием и на другие медиаторные системы. Например, на катехоламинергические системы (норадренергическую и дофаминергические). Показано, что активация дофаминергических систем усиливает проявление агрессии, а блокаторы этой системы эффективно ее подавляют. </p><p>Показано вовлечение опиоидэргических систем в механизмы контроля агрессии. Основная биологическая функция этих систем состоит в обеспечении положительного (или отрицательного) подкрепления любого физиологического или поведенческого акта, осуществляемого на уровне формирования эмоций. Эти системы дают возможность индивиду понять, хорошо это было или плохо. Если говорить в терминах психологических, опиоидэргическим системам приписывают функции вознаграждения. И именно они обеспечивают положительное подкрепление агрессивного акта, который сопровождается победой. Именно поэтому агрессивное поведение, проявленное раз стремится быть проявленным вновь.</p><p>Чтобы завершить эту часть краткого рассмотрения исследований, проводимых на животных, и посвященных изучению нейробиологических составляющих агрессивного поведения, нужно сказать, что существует много нейрохимических, поведенческих и физиологических механизмов, влияющих на возникновение, характер, и реализацию агрессивного поведения в провоцирующих условиях среды. </p><p>До сих пор мы говорили о той агрессии, которая играет позитивную роль в приспособлении особи к среде обитания и носит позитивный характер, поскольку позволяет особи сохранить жизнь и достичь положительного результата в борьбе за самку, пищу, среду обитания. Этот вид агрессивного поведения у животных рассматривается аналогом так называемой импульсивной агрессии у людей. И все то, что мы знаем о механизмах агрессии у животных, можно отнести и к человеку, у которого импульсивная агрессия возникает в ответ на провоцирующий стимул в конфликтных ситуациях. Фромм называл такую агрессию доброкачественной.</p><p>Но помимо этого вида агрессии человеку присущи, как минимум, еще два вида агрессии, которые не встречаются у животных в естественных условиях. Прежде всего, это патологическая агрессия, сопровождающая развитие многих психических заболеваний. Это маниакально-депрессивный психоз, это эпилепсия, это шизофрения, это различные токсикозы мозга. Агрессия вызывается токсическими веществами, которые образуются в мозге во время болезни. </p><p>Другой вид агрессии, который не встречается у животных, но встречается у человека, называется преднамеренной агрессией. Когда нет стимула, во всяком случае очевидного стимула в конкретный момент совершения агрессивного акта, и есть отставленное во времени его исполнение. Агрессия рождается в результате какого-то внутреннего побуждения. Формируется намерение совершить агрессию и насилие по отношению к другому индивиду. У каждого индивида свой собственный (физиологический и психологический) стимул запускает агрессивное поведение. </p><p>Различают подтипы преднамеренной агрессии. Выделяют инструментальную агрессию, когда человек использует агрессию в качестве инструмента для получения желаемого. Он не относится плохо к объекту агрессии, но ему нужно нечто определенное, для чего необходимо проявить агрессию. Например, человек убивает прохожего для того, чтобы завладеть его кошельком. При этом эмоциональные компоненты преднамеренной агрессии могут быть самыми разными: позитивный, негативный или вообще полное отсутствие эмоциональной реакции в момент исполнения агрессивного акта. </p><p>Другой тип преднамеренной агрессии называется "обученной агрессией". Нет такого слова в русском языке, которое бы можно было с полным правом применить для обозначения этого вида агрессии. Индивид научается быть агрессивным, побеждать и подавлять своего соперника в повторных пробах или же просто смотря телевизор или другими способами.</p><p>Хочу отметить, что не всегда у человека речь идет физической агрессии. В определение понятия агрессии включают любые формы поведения, которые наносят существенный вред другому индивиду, по отношению к которому они направлены. Наиболее общепринятым является определение агрессии, по которому любая форма поведения, направленная на оскорбление или причинение вреда любому другому живому существу, не желающему подобного обращения, может быть рассмотрена как агрессия. Это физическая агрессия, но это и вербальная агрессия. Это сплетни, козни. Можно предполагать, что механизмы агрессии во всех этих случаях могут быть сходны, поскольку всегда есть некое побуждение к агрессии, есть ее реализация, которые обеспечиваются определенными нейрофизиологическими механизмами. И есть результат, выражающийся в каком-либо позитивном исходе и стимулирующий ее повторное проявление для получения позитивного результата и т.д.</p><p>Нам удалось разработать модель, которая позволяет изучать влияние повторного опыта агрессии на состояние индивида, его индивидуальное и социальное поведение в различных ситуациях, его физиологию и нейрохимию мозга. Если ранее исследователи изучали влияние изменения различных состояний, например, гормонального фона, на проявление агрессии, то мы изучаем, каким образом повторный опыт агрессии влияет на организм индивида. </p><p>На самом деле это очень актуальная тема, поскольку повторный опыт агрессии человеку приходится проявлять довольно часто в силу определенных обстоятельств или выбора: это армия, это службы безопасности, это спорт. Это бизнес, в котором есть конкуренция, есть подавление, а иногда, и уничтожение противника, пусть даже способами, которые не являются физическими. </p><p>В предлагаемых условиях нашей модели самцы мышей каждый день демонстрируют агрессию по отношению к своему партнеру. Условия сенсорного контакта, в которых животные живут в общей клетке через прозрачную перегородку с отверстиями, при этом они видят, слышат, воспринимают запахи друг друга, но не имеют возможности физически контактировать, стимулируют агрессивность у самцов мышей. Сам агрессивный акт во время 10 минутного тестирования, когда перегородка убирается, длится секунды, и по времени не отличается от той агрессии, которая происходит практически каждый день в лабораторных популяциях – при проживании животных в группе. Но именно повторный последовательный опыт агрессии каждый день, сопровождаемый победами, вызывает очень глубокие изменения в организме самцов мышей, которые проявляет эту агрессию. </p><p>Мы наблюдаем животных в течение 10-20, иногда 30 дней конфронтационных взаимодействий. Надо сказать, что у самцов под влиянием повторного опыта агрессии увеличивается двигательная и исследовательская активность в различных поведенческих тестах, они меньше умываются, у них изменяется реакция на боль, иногда они гиперчувствительны даже к тактильному воздействию. У таких самцов после длительного опыта агрессии развивается тревожность, которую мы отслеживаем в самых разных поведенческих тестах, используемых для измерения тревожности. У них снижается эмоциональность, самцы теряют способность дифференцировать партнера по его "качеству", то есть, не способны отличить, например, молодого самца от зрелого, нападают на подчиненного самца, демонстрирующего позы полного подчинения, чего ранее никогда не наблюдалось. Они могут напасть на руку экспериментатора или на самца, существенно большего его по весу. </p><p>Не так давно было обнаружено, что агрессоры не способны отличить самку от самца. Если самцу без опыта агрессии подсадить за перегородку в соседний отсек рецептивную самку, то нормальный самец реагирует на самку увеличением поведенческой активности возле перегородки, и у него поднимается уровень полового гормона тестостерона. У агрессоров с длительным опытом агрессии, во-первых, не усиливается поведенческая реакция на самку и у него не поднимается уровень тестостерона. Все это говорит о том, что первые фазы полового поведения у них нарушаются. И если перегородку, разделяющую животных, убрать, то агрессор, начинает гонять и даже нападать на самку, принимая ее за партнера-самца, на которого он привык нападать. </p><p>Кроме того, самцы начинают демонстрировать много других, новых форм поведения, которых до этого они в свободном поведении никогда не демонстрировали. Они начинают нервно подпрыгивать, что можно было бы рассматривать как поведение устрашения. Все поведение таких самцов, даже в те моменты, когда они физически не соприкасаются с другим самцом, свидетельствует о враждебности. Как только перегородка убирается, самцы бегут не к партнеру, который сидит в углу и никак не реагирует на агрессора. Они наносят вред его "имуществу": раскидывают и разбрасывают его подстилку, туалетное место. И хотя подчиненный самец не сопротивляется, демонстрирует позу подчинения, тем не менее, агрессор стремится любым способом нанести ему ущерб. Это говорит о том, что под влиянием повторного опыта агрессии уровень агрессивной мотивации может сильно возрастать. Она не всегда реализуется, но возрастает. При этом прямая агрессия, направленная непосредственно на объект агрессии, заменяется непрямыми формами агрессии. Агрессор начинает подавлять и угнетать противника другими способами, не требующими физических усилий. И в этом мы видим обучение: он использует формы поведения (угрозы, подпрыгивания), которые выглядят устрашающе. Однако, некоторые особи, их не так много, демонстрируют патологическую агрессию, которая очень сильна и не поддается коррекции ситуационными факторами. Достаточно незначительного воздействия, чтобы вызвать бурную реакцию, совершенно неадекватную ситуации, которая ее вызывает. Мойер, известный исследователь агрессии, в своей книге "Агрессия и насилие", писал о том, что агрессия у людей иногда бывает неконтролируемой, свирепой, неадекватной, и совершенно бесцельной. И у некоторых агрессоров ее можно вызвать легким стуком по столу. Формируется агрессивный тип поведения, в результате чего животные даже в абсолютно нейтральных условиях, не несущих угрозу (подчиненный партнер), реагируют по агрессивному типу. Если таких животных с опытом агрессии помещать в комфортные условия, или просто оставлять сидеть друг с другом через перегородку, без ежедневных конфронтаций, то и через две недели мы могли наблюдать у этих самцов очень сильную агрессию.</p><p>Формирование агрессивного типа поведения сопровождается многими изменениями в нейрохимических показателях медиаторных систем головного мозга. Активируются дофаминергические системы. Это те самые системы, которые ответственны за двигательную активность, за эмоциональные реакции. Большое количество тел дофаминовых нейронов находится как раз в тех структурах мозга, которые ответственны за положительное подкрепление, и активация метаболизма дофамина свидетельствует об активации этих дофаминергических систем. Но при этом серотонергическая система мозга, о которой мы ранее говорили, и которая осуществляет тормозный контроль агрессивного поведения, блокирована у таких животных. Все эти изменения накапливаются в мозге в процессе приобретения повторного опыта агрессии. То есть, можно говорить о динамических изменениях нейрохимической активности мозга, в частности, в тех медиаторных системах, о которых говорилось выше. </p><p>Как мы это отслеживаем? Биохимическими методиками измеряем показатели медиаторной активности мозга, отражающие функциональное состояние медиаторных систем. Показаны изменения на уровне синтеза, катаболизма, рецепции медиаторов. Фармакологическим методом показано, что, например, блокаторы агрессивного поведения при введении "новобранцам", самцам, участвующим в первых агрессивных столкновениях, очень эффективно подавляют у них агрессию. При введении той же самой дозы препарата агрессорам с повторным опытом агрессии, такого эффекта нет. Фактически, агрессоры перестают реагировать на многие препараты. Можно говорить о развитии десенситизации рецепторов тех медиаторных систем, которые активируются под влиянием повторного опыта агрессии. В качестве аналогичного примера можно привести всем знакомый феномен формирования алкогольной зависимости. Поначалу у индивида есть некая предрасположенность к потреблению алкоголя, затем в ответ на длительное потребление, через какое-то время, развивается толерантность к его эффектам: формируется необходимость выпивать все больше и больше алкоголя, чтобы получать эффект его воздействия. В продвинутой стадии алкоголизма достаточно небольшого количества алкоголя для того, чтобы вызвать эффект. Развивается сенситизация к эффектам алкоголя. Это происходит в результате накопления изменений в мозге под влиянием повторных приемов алкоголя, и на чуть большую дозу может развиться интоксикация, которая может привести к белой горячке... У наших агрессивных животных, аналогично, просматриваются динамические изменения нейрохимической активности мозга. Отсутствие тормозной регуляции со стороны тех медиаторов, которые обязаны ее осуществлять, например, серотонина, приводит к тому, что агрессия, когда она возникает, становится неподвластной контролю со стороны индивида. Развивается патология поведения, которая нуждается в медикаментозной коррекции, скорее всего, просто так она не проходит. </p><p>Таким образом, можно сказать, что повторный опыт агрессии очень сильно изменяет психофизиологические характеристики индивидов, которые вынуждены или по собственной воле участвуют в ситуациях, когда они должны проявлять агрессивное поведение. Как следствие, в результате повторного опыта агрессии может развиться патология поведения, которая является следствием накопления нейрохимических изменений в головном мозге и развития дисбаланса в активности различных медиаторных систем. </p><p>Коррекция такого типа поведения, фармакологическая или психологическая, очень сложна, именно потому, что те препараты, которые обычно используются для этих целей, становятся не эффективны. Свои исследования мы проводим с целью найти возможные пути воздействия на измененное состояние нейрохимической активности, которое мы наблюдаем у животных с повторным опытом агрессии. Если вернуться к общим положениям, с которых мы начали, хотелось бы отметить, что не у всех индивидов может формироваться феномен патологической агрессивности под влиянием повторного опыта агрессии. Конечно, к тому должна быть предрасположенность: или на уровне нейрохимической регуляции активности мозга, или на уровне сенсорного восприятия, или на уровне отдельных психофизиологических особенностей индивида. Поэтому в нашу задачу входит также изучение того, каким образом и какие наследственные факторы могут влиять на характер формирования агрессивного типа поведения, агрессивной патологии. А.Г. Сразу возникает вопрос. Есть некий парадокс с моей точки зрения, поскольку, как вы сказали, агрессия наследуется, а агрессивные самцы в человеческом сообществе социально успешнее, то половой отбор должен закрепить за ними преимущество воспроизводства. То есть количество агрессивных потомков с каждым поколением в человеческом сообществе должно увеличиваться. Или я неправ?Н.К. В человеческом сообществе или в популяции?А.Г. Я имею в виду популяцию человечества.Н.К. На примере сообщества животных. В популяции чрезмерно агрессивные самцы, как правило, элиминируются, притом способами, совсем другими, чем внутривидовые конфронтации. Например, межвидовыми взаимодействиями. Агрессивный самец, как правило, обладает высокой двигательной активностью, он меньше сидит в укрытии, он чаще выходит на поверхность, и, как правило, чаще бывает съедаем. Что же касается человеческого общества, то у очень агрессивных индивидов наблюдается масса психоэмоциональных нарушений, о которых мы с вами говорили, повышенное состояние тревоги, например. У них может быть снижена сексуальная потенция. Кроме того, в контроле агрессивного поведения принимает участие много генов. И каждый раз, при скрещивании разных особей сочетание этих генов разное, и вероятность формирования какая-либо чрезмерной предрасположенности к агрессивному поведению невелика... А.Г. То есть в гибриде может не проявиться. Н.К. Да. И даже если агрессивный ребенок появляется в семье, и если родители отдают себе отчет в том, что это может развиться в определенное нежелательное русло, то всегда можно найти такой прием, в котором эта агрессивность может найти себе выход.А.Г. Например, отдать в спортсекцию.Н.К. Да, спорт...Считается, что импульсивность, о которой говорят, как о черте характера, которая всегда сопровождает агрессивность людей, является необходимой, но недостаточной для проявления агрессивного поведения. Должна быть провокационная среда. И даже в провокационной среде агрессию демонстрируют обычно только те, кто привык реагировать по агрессивному типу. Поэтому говорить о том, что всегда в данной конкретной ситуации, даже, если она будет провоцирующей, проявится агрессия у индивида, тоже нельзя. </p><p>Стоит сказать, что импульсивность, которая является обязательной составляющей импульсивной агрессии, как черта характера, наследуется. За рубежом были проведены большие программы, которые изучали взаимосвязь между наследственностью и криминальными действиями. Было показано, что влияние наследственности есть. Если биологический отец был осужден, то есть большая вероятность, что будет осужден и его ребенок, даже если его воспитывают другие родители. Но нельзя ставить равенство между двумя понятиями – криминальное поведение и агрессия, как таковая. Или, например, другой факт. Например, полагали, что лишняя Y-хромосома, присутствующая у некоторых людей, может обусловить повышенную агрессивность. Действительно, когда изучили людей, сидящих в тюрьмах в связи с их криминальными действиями, оказалось, что действительно процент индивидов, у которых есть измененный набор хромосом, там существенно больше. И поначалу этот факт рассматривали в качестве одного из доказательств того, что хромосомная патология формирует повышенную агрессивность. Но потом стали проверять и другие гипотезы. Если взять статистику, то процент людей с нормальным набором хромосом совершает существенно больше преступлений, чем люди с аномальным набором хромосом. У людей с хромосомными аномалиями отмечается низкое интеллектуальное развитие. Кроме того, они отличаются и внешне, они больше по весу и т.д. И в конце концов пришли к выводу, что скорее всего виновато не влияние Y-хромосомы на проявление агрессии, а это связано с тем, что такие люди просто чаще попадаются. И поэтому процент...А.Г. Ума не хватает убежать.Н.К. Да, и процент таких людей среди преступников, сидящих в тюрьмах, существенно больше. А.Г. К слову о тюрьме. Ведь это, на мой взгляд, идеальное место для создания условий к повторной агрессии. Ведь очень напоминает ваши опыты – особенно содержание в наших тюрьмах. То есть получается, что с одной стороны, общество, изолируя себя от преступников, добивается только того, что уровень агрессивности тех, кто выходит из тюрьмы после этого выше? Или я ошибаюсь?Н.К. То, что там люди не становятся лучше, это совершенно очевидно. Но тюрьмы – это крайний случай. Например, спортивные коллективы или армейские подразделения, где уровень агрессии очень высок. И в этих коллективах видим очень частые проявления неосмысленной агрессии. Как раз в таких коллективах в первую очередь работают биологические механизмы, а не социальные. </p><p>Надо сказать, что на каждом уровне рассмотрения, работают разные механизмы, запускающие проявление агрессии в данном сообществе. И чем дальше мы уходим от взаимодействия двух индивидов к социуму, естественно начинают работать не столько биологические механизмы, сколько социальные. Поэтому в каждом конкретном случае, если мы хотим снизить уровень агрессии в том или ином коллективе, в том или ином обществе, в той или иной стране и так далее мы должны и соответственно подбирать разные способы воздействия, учитывая различные механизмы, запускающие агрессию. Что же касается нейробиологических механизмов, то они, как мне кажется, всегда работают в тесных коллективах, например, в армии. Их можно отследить и на них можно повлиять для того, чтобы убрать пусковые биологические механизмы агрессии.А.Г. Ну, да, если солдатам дают бром, то почему не давать медикаменты, которые снижали бы у них уровень агрессивности.Н.К. Гораздо проще. Например, если мы знаем, что межсамцовая агрессия запускается, например, запахами других мужских индивидов, то, может быть, просто стоит им выдавать дезодоранты и...А.Г. Как это делается в американской армии. Н.К. Как это делается у американцев. Насколько мне известно, это входит в обязательный набор солдата в армии. Нужно, чтобы солдаты не жили в казармах. Нужно, чтобы они имели возможность отключаться от той ситуации, в которой они находятся. На мой взгляд, существует масса приемов, учитывающих биологические механизмы контроля агрессии, которые позволят убрать или снизить неосмысленное и неадекватное проявление агрессии. И далее, каждый конкретный коллектив нужно смотреть на предмет того, что же там такое происходит, почему уровень агрессии очень высокий.А.Г. Может быть, действительно просто не пользуются дезодорантом... Чем сложнее социальное устройство общества, тем выше уровень агрессии в нем?Н.К. Какой агрессии? Прежде всего, возникает вопрос о том, о какой агрессии идет речь. Если речь идет о физической агрессии, то, скорее, нет. По крайней мере, за проявление физической агрессии все-таки есть наказание или страх наказания. Но если речь идет о других видах агрессии, то она, на мой взгляд, возрастает. Есть конкурентные отношения, есть непрямая агрессия, та самая агрессия, которая наносит существенный вред другому индивиду, но не судится. Поэтому уровень агрессии, конечно же, не снижается, но агрессия принимает другие формы.А.Г. Вы могли бы рекомендовать производителям алкогольных напитков добавлять в любой алкогольный напиток некие химические вещества, вроде серотонина, которые снижали бы уровень потенциальной агрессии?Н.К. Нет, я бы не рекомендовала, потому что, во-первых, тот же самый серотонин, он не ингибитор агрессии, он регулятор, и может вызвать, например, тревогу и страх, которые в свою очередь будут теми провоцирующими факторами, которые приведут к повышению агрессии. Во-вторых, каждый индивид имеет свою историю или имеет свое такое состояние...

gordon: Эффекты сверхмалых доз

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Елена Борисовна Бурлакова– доктор биологических наук</li></ul><p><strong>Александр Гордон: ...попросил одного моего знакомого, который занимался наукой в тот момент, объяснить мне, в чем скандальность этой публикации. Он сказал: "Ну, представь себе, что ты берешь ключ от машины, опускаешь его в Темзу в районе, скажем, моста Александра Великого. А потом в другом месте Темзы берешь пипеткой каплю воды и с помощью этой капли открываешь машину, поскольку информация об этом ключе сохранилась". Елена Бурлакова: Он и сейчас продолжает настаивать. Но то, что делает сейчас Бенвенисто – это уже как небо и земля, он теперь говорит о том, что будет передавать лекарства людям через Интернет. Вот уж именно: "Темза и ключ". Но скандальность этой работы была в другом. Поначалу Бенвенисто был классическим биохимиком, потом начал совместную работу с гомеопатами, а через какое-то время опубликовал полученные данные без них, и они на него очень сильно обиделись. Вообще-то он был очень успешный биохимик, это тоже надо понимать, – человек не полезет просто так в петлю. А.Г. И не опубликует просто так материалы в "Nature"...Е.Б. "Nature"-то проверял результаты перед публикацией 6 раз, а потом все равно отказался от напечатанного, что было весьма глупо. Дело вот в чем – так как вы не знаете истинного механизма, эффект может зависеть от того, каковы изначальные координаты для вашего случая. А он тоже этого не знал. И у него были некоторые случаи, когда ничего не получалось. А.Г. То есть повторяемости не было. Е.Б. Просто иногда не получалось, иногда получалось. Но если иногда получается, значит, что-то все-таки есть. Если женщина один раз родит крокодила, необязательно, чтобы была повторяемость, главное, чтобы это видело много народу. А.Г. И все-таки вернемся к нашей теме. Сверхмалые дозы – что это?Е.Б. Можно дать объяснение такого порядка – это те дозы, начиная с которых, современная биохимия, современная наука не может объяснить их действие. Но мы можем определить немножко по-другому. Это те случаи, когда у вас число молекул химического вещества на клетку становится меньше единицы. Или можно сказать так: это дозы, когда прежде работавшие объяснения не проходят. Поэтому на самом деле – это тот мир таинственности, который требует новых объяснений, принципиально новых, потому что для концентрации 10-8 моля есть прекрасное объяснение: 10-11 – тоже есть объяснение, хотя здесь с этим уже не так просто. А вот минус 12-ть, 13-ть, 15-ть... </p><p>А если вы еще присоедините гомеопатию к этому классу явлений, то окажетесь в тяжелом положении, потому что придется либо говорить, что это все выдумки и этого быть не может, что люди ставят не тот эксперимент, делают не тот контроль и так далее. Либо вы должны принимать какие-то другие, новые представления, другой алгоритм исследования. </p><p>Вы знаете, что здесь самое интересное? Я часто думала – почему люди не обратили внимания на это тогда, когда разрабатывали лекарства? И оказалось, что на самом деле причина не принципиальная, а связана она с нашей обыденной жизнью. Вот вы взяли лекарство, скажем, 100 миллиграмм, и даете его человеку, потом видите эффект. Потом вы дали ему не 100, а 10 миллиграмм. И у вас эффект приблизительно в 10 раз стал меньше. Дали миллиграмм – ничего нет, дали одну десятую миллиграмма – тоже ничего нет. Я спрашиваю: кто из дураков будет разбавлять дальше? Никто не будет разбавлять. И будет считать, что ничего нет и не может быть. </p><p>У нас эти вещи открылись тоже совершенно случайно. Случилось это двадцать лет назад. В 83-м году мы ставили эксперимент в Институте психологии и смотрели влияние одного биологически активного вещества на нейрон. И оказалось, что оно действовало, но было токсично, и очень скоро нейрон погибал. Тогда мы решили уменьшить концентрацию. Но уменьшали концентрацию не химики, которые, скажем, в 2 раза уменьшат, ну, в 10, не больше. А мы сделали, как в иммунологии делают – в 100 раз, в 1000, в 10 000. И когда попробовали эти растворы, то были потрясены тем, что эффект не просто не пропал, а остался... </p><p>Потом мы стали делать опыты на животных, зная, что эффект должен быть. Мы не остановились на 0,1 миллиграмма, а сделали одну сотую миллиграмма, потом одну тысячную, потом одну десятитысячную. И при одной стотысячной миллиграмма вдруг у нас появился эффект, и он пополз вверх, пополз и пополз. Здесь как раз есть рисунок, который показывает этот эффект. Что самое характерное? Обратите внимание, вот два пика, а между ними у вас так называемая "мертвая зона", воздействия нет. И поэтому все началось с больших доз, когда искали токсическую дозировку. Потом начинали ее уменьшать и уменьшать, и так был получен этот эффект. </p><p>Покажите, пожалуйста, второй слайд. В этой ситуации есть несколько особенностей. Первый момент – это сложная зависимость. То есть у вас не в любом месте этот эффект проявляется. Это не прямая линия, которая все время будет вам давать маленькие дозы, ничего подобного. Вы опускаетесь на отсутствие эффекта, и это бывают очень большие концентрации, на 10 порядков, например, разница. А.Г. Эффекта нет и нет, а потом... Е.Б. А потом он вдруг возникает. Это, прежде всего, конечно, наводит на мысль, что это мы имеем дело сначала с сигналом возможного действия, а потом – через какой-то промежуток – с самим воздействием. Воздействие – это когда 10-6 моля, 10-5 моля, а сигнал о возможности такого воздействия, естественно, должен быть отделен. Как предупреждение и время на раздумье. Если сигнал и само действие окажутся рядом, вы ничего не сможете рассмотреть и не успеете дать ответную реакцию на этот сигнал. Я привожу такой образный пример, когда меня спрашивают об этом: есть мясо, пахнет мясом, а мяса нет. У вас же все равно идет перестройка. Вы ожидаете, вы в напряжении, что сейчас принесут мясо, у вас уже слюноотделение началось, желудочный сок выделяется, а ничего нет. Поэтому я говорю, что если бы я была Господом Богом, я бы именно так разделила, чтобы сигнал и действие не смешивались. Одно дело – информация о чем-то, а другое – сам процесс поглощения. </p><p>Особенности действия сверхмалых доз заключаются, во-первых, в сложной полимодальной зависимости "доза-эффект" – причем на всех уровнях. Я с самого начала хочу сказать, что мы будем говорить про химию, но тоже самое вам расскажут люди, которые занимаются радиационной биологией, тоже самое вам расскажут те, которые занимаются электромагнитным излучением. Те же самые проблемы, те же самые. </p><p>Кинетический парадокс в действии, что это такое? Вы можете давать вещество, которое в организме содержится в концентрации на два порядка выше, чем экзогенная концентрация. Но вы чувствуете его, хотя даете такую маленькую концентрацию. Этому придумывалось много объяснений: что в организме все соединено с белками, например, но на самом деле свободная концентрация тоже меньше. Но это уже объяснение эффекта, а сам факт вот такой. </p><p>С электромагнитным лучом – та же самая ситуация. У вас излучение по интенсивности может быть ниже магнитного поля Земли. "Ну как же, – говорят, – так может быть? Что вы, не понимаете, во сколько раз там больше?.." Это и есть тоже самое. </p><p>Между прочим, мы именно таким образом пользуемся лекарствами, сами того не понимая. Мы вводим себе один миллиграмм какого-то лекарства, а у нас в печени это же самое вещество находится в десятках грамм. Поэтому на самом деле это есть кинетический парадокс, и он распространен на все случаи, когда присутствует слабое интенсивное воздействие. </p><p>Далее – зависимость ответа от начальных характеристик биологического объекта. На этом погорел Бенвенисто. Если бы он знал, какие характеристики важны, он бы сказал: вот у вас два эксперимента, они не проходят, потому что на самом деле начальные условия – разные. Но когда люди уже стали специально это изучать, то что они показали? Если вы берете случай, когда у вас много данного вещества, и действуете малыми дозами, вы можете привести к уменьшению этого количества, а когда у вас мало – к увеличению. Я называю это правило "орут", когда едет милицейская машина и оттуда говорят: "80 километров!" Кто меньше, тот должен подтянуться, кто больше, тот должен немножко опуститься. Такая же ситуация и здесь. То есть эффект будет зависеть от того, на что вы действуете. Это тоже очень важный момент – важный момент именно для сигнала. Если бы мы с вами просто поглощали мясо, то дело сводилось бы к тому – наелся ты или нет? можешь есть или нет? А если есть сигнал, то он может приводить к желанию большему или, наоборот, – к отвращению...А.Г. То есть здесь аналогия такая: если запах мяса слышит вегетарианец или сытый человек, у него не возникает...Е.Б. Совершенно верно, могут быть разные ответы. И наконец – расслоение эффекта. Это вещь, которая очень важна в практическом плане. Например, у вас есть препарат, который обладает пятью разными свойствами. И они все действуют одновременно. А это неприятно – например, какой-нибудь наркотик одновременно вызывает зависимость. А если не вызывает зависимость – может и не действовать. Так вот, когда вы начинаете уменьшать концентрацию, то для каждого свойства может быть пик в разных местах. И тогда вы их разделите. Нам удалось разделить действие в случае феназепама, я потом покажу эту картинку. Феназепам был ночным транквилизатором, его в Институте фармакологии делали под руководством Сергеевой и Ворониной. Почему он ночной транквилизатор? Потому что он расслабляет мышцы, вызывает ощущение сонливости и так далее. Вы не можете дать его людям как транквилизатор днем, потому что если они его примут днем, могут попасть и в аварию и так далее. А когда вы его даете в маленькой дозе, то у вас сонливость остается в одном концентрационном месте, миорелаксация – в другом, и вы имеете уже как бы новый препарат, который лишен ненужных свойств. И мы его уже записали в патенте как дневной транквилизатор. А.Г. Хотя химический состав тот же самый. Только концентрацией отличается.Е.Б. Да. Ну, может быть, там есть какие-то и примеси, но дело не в этом. Дело именно в том, что для каждого свойства есть своя собственная зависимость. </p><p>Очень важным моментом является то, что после действия сверхмалых доз увеличивается чувствительность биообъектов ко всем другим факторам. То есть, если вы живете в такой среде, где много всяких химических выбросов, то вы можете очень слабыми дозами повысить эту чувствительность. Но это вопрос больше для практики. </p><p>Можно попросить следующий слайд показать? Дальше я не будут останавливаться подробно, результаты каждый раз одни и те же. Это я делаю только для того, чтобы вы поверили, что мы провели не один-два опыта, а действительно громадное количество самых разных экспериментов. А.Г. И характерные пики сохраняются везде.Е.Б. Да. Вот пестициды, например. И вы видите, что разница в 6-8 порядков – а одно и то же действие. Например, там может быть стимуляция, эффект стимуляции то же будет разный, будут опять же эти обыкновенные кривые. Это пример того, как пестициды могут действовать в дозах на насколько порядков меньше. Я вам могу сказать, в качестве небольшого отступления, что мы вели работу с "Дюпоном", и получилось, что их препараты, их пестициды можно было употреблять в концентрации на много порядков ниже и получать один и тот же эффект. И они нам все время говорили: "Пришлите нам данные, мы их обдумаем", но на самом деле просто сказали, что они не будут их публиковать, чтобы...А.Г. Им же невыгодно.Е.Б. Ну, знаете, можно было бы сделать и выгодным: повысишь цену, а давать будешь в меньшем количестве. Давайте просмотрим быстро несколько слайдов.А.Г. Здесь я вижу графики, на которых пониженные концентрации вызывают даже больший эффект, чем высокие.Е.Б. Да, совершенно верно. Мы можем добиться даже совершенно нового эффекта, как в случае феназепама. На следующем графике цитогенетические изменения. Вы берете концентрацию, скажем, 10-4 моля на килограмм или 10-17. И видите, что количество хромосомных аберраций приблизительно одинаковое. В одном случае количество хромосомных аберраций на клетку один и два, в другом – два и девять. Но это не принципиально, если дозы различаются на 13 порядков. И то же самое при многократном введении. </p><p>А это препарат нитрозометилмочевина, который мы вводили при лейкозе и получили такой эффект на цитогенетике. И одновременно у мышей с уже перевитым лейкозом на 40 процентов увеличивалась продолжительность жизни. </p><p>Следующий слайд. Кроме всего прочего, я на этом даже не буду останавливаться, возникает антиметастатический эффект. То есть, вы берете животное, вводите препарат. У него возникают метастазы, через длительное время после того, когда вы привили основную опухоль. А потом смотрите, какие именно метастазы возникают. Так вот введение препарата в дозе, меньшей на 5-7 порядков, дает тот же самый эффект по ингибированию возникновения метастазов.А.Г. А токсичность, естественно, понижается.Е.Б. Да, а токсичность меньше. Хотя мне сказали в фармкомитете: вы очень хитрая женщина – говорите, что у вас там активность повышается, а надо проверить, может, и токсические эффекты тоже повышаются, не надо забывать, что тут тоже могут быть такие же...А.Г. Такие же всплески?Е.Б. Да. Но не всегда. Очень часто токсичность и активность идут параллельно, но в действительности не потому, что невозможно их никак разделить, а просто потому, что мы работаем в тех концентрациях, где проявляется и то, и другое. </p><p>Но можно думать, что все это только на животных проявляется, но это и на нейронах, очень хорошо действуя на память – мы получали те же эффекты. Были даже предположения, что это опосредовано в организме какими-то совершенно другими процессами, чем те, которые мы наблюдаем. Взяли раствор фермента – и вы видите ту же самую картину. Это важный регуляторный белок, и мы у него то же самое наблюдаем: при дозе 10-14 моля у вас пик, при дозе 10-4 – 10-5 – между ними тоже пик. Причем они приблизительно одинаковые. Если не сказать, что совсем одинаковые. </p><p>И что еще очень интересно: если вы будете более подробно изучать эти кинетические характеристики, то увидите, что эффект получается по разным причинам. В одном случае, когда маленькая концентрация – структура больше меняется, а в другом уже непосредственно меняется сродство. </p><p>Как же объяснить поведение фермента? Это очень сложно. Ведь вы просто вводите в раствор вещество в такой маленькой дозе. Мы же с вами как привыкли? Молекула белка, молекула лиганда, если у них сродство высокое – они соединяются, а если нет, то нет, не каждая молекула соединяется. И все-таки мы с вами получаем, что есть ферментативная реакция, вы ее наблюдаете. Но в случае, который у нас сейчас был, когда мы вводили фермент, оказалось, что на самом деле число молекул лиганда при этих низких дозах – один к 10000, даже было один к 100 тысячам. Видите, какие жуткие соотношения. Тут ничего уже не придумаешь. Естественно, такие результаты требуют других объяснений.А.Г. То есть одна молекула лиганда на 10-4 молекул белка?Е.Б. Да. Но как это может быть? Она их даже оббежать, наверное, не поспеет так быстро. И отсюда уже появилось новое представление. А именно, что, может быть, дело не в непосредственной передаче, а в изменении чего-то, что может играть важную роль. Например, у вас есть раствор белка, или гидратированная молекула белка. Эти маленькие концентрации могут вмешаться во взаимодействие белка с водой. И в результате вы помешаете этим реакциям. Как я говорю: если мы возьмем горошину, вставим в дверь, то вроде ничего не должно быть, а она мешает, и вы дверь не закроете. Возможно, такие есть варианты развития событий, так можно было бы кое-что объяснить. Или так: мы уже знаем, что в воде имеется очень большое число самых разнообразных структур, которые сосуществуют друг с другом. Причем разные авторы по-разному рассматривают те или иные структуры.А.Г. Да, нам вообще предлагали рассматривать воду как сложный полимер.Е.Б. Вы знаете... Конечно, вода не такая простая вещь, как нам с вами кажется. И я думаю, что не зря вся жизнь в воде зародилась. Если бы не было каких-то совершенно необычных свойств у воды, то, может быть, ничего бы и не получилось. Хотя здесь много и всевозможных спекуляций. Например, начнем с того, что когда считают, что длительно живущие состояния – водные слепки действия препаратов, например, – то, как правило, считают, что они живут долго. Физики утверждают: они живут 10-7 – 10-11 секунды и ни секундой больше. Они делают свои утверждения на основании тех данных, которые не получают практически, они получают их для "компьютерной воды". А воды такой нет в природе. Как примеси, содержащиеся в обычной, не "компьютерной" воде, могут влиять на состояние жизни, это тоже довольно сложно объяснить. Поэтому мы с вами можем спокойно отнестись к этому эксперименту. Коль скоро в воде эти процессы имеют место, мне не нужно их долгой жизни, мне достаточно того, что показывает физика, и я могу все объяснить. </p><p>Совсем другая ситуация, конечно, когда мы переходим к гомеопатическим средствам. Поэтому многие ученые ставят стену между концентрациями 10-18 моля и 10-23. Они ставят здесь для себя грань и говорят: мы этим вопросами не занимаемся. Я тоже была раньше таким осторожным человеком и тоже говорила: я не хочу терять последних своих знакомых и сторонников в связи с тем, что я в эту область попаду. </p><p>При этом пытаются совершенно иначе объяснить какие-то результаты для области, которая уже не является гомеопатической. Я могу придумать разные объяснения, осложняющие или усиливающие тот или другой аспект этой проблемы. </p><p>На следующих слайдах показано, как Ашмарин к этому относится. Он считает, что для того, чтобы был эффект, мы должны умножить количество этих этапов, то есть должны быть некие каскадные системы. Кроме всего прочего, они должны собраться все вместе и передать эти молекулы на следующий уровень уже в собранном виде. И кроме всего прочего должны быть очень высокоактивные рецепторы. Правильно. Это позволяет нам объяснить такие явления, не заходя за грань. </p><p>На следующем рисунке наглядно представлено, как происходит это объединение, то есть какие нейроны выступают в качестве собирающих, как они передают и так далее. </p><p>Но, к сожалению, во-первых, таких высокоактивных рецепторов нет. 10-12 – это уже выше головы. А если вы возьмете сродство еще более высокое, то это будет постоянное связывание, не будет никакого схода с одного места на другое. Есть представление Блюменфельда о параметрическом резонансе. Он считает, что если скорость подхода молекул к ферменту будет такова же, как время его жизни в возбужденном или невозбужденном состоянии, – вы тоже можете попасть в резонанс и поддерживать этот фермент в возбужденном состоянии, и тем самым продлевать время его жизни, его работы. Но ниже, при 10-15 – это тоже не проходит. Здесь нужно опять придумывать какие-то новые объяснения.</p><p>Если можно, давайте обратимся к следующему слайду. Это уже вода. И тут каждый пишет то, что думает. Иногда трудно определить, думает он это или он это уже получил. Есть такая группа ученых из Соединенных Штатов Америки. При этом они все, по-моему, не американцы: Ло, Лу и так далее, целая группа.А.Г. Этого следовало ожидать.Е.Б. Они утверждают, что если вести в дипольную молекулу воды какой-то металл, который позволяет такие молекулы определенным образом выстроить, а потом начинать трясти эту систему, то металл может выйти, а эта цепочка остаться. И они применяют много разных методов. Всё это красиво нарисовано, но как они готовят раствор, они не пишут. И поэтому мы воспроизвести это не можем, даже используя ту же самую технику, потому что мы не знаем, как они готовят эти растворы. Ну, это старая тема, когда все утверждают, что существуют стабильные комплексы, они долго живут и можно объяснить очень большое количество свойств за этот счет. </p><p>Следующий слайд, пожалуйста. Есть и другие представления. Вы, по-моему, беседовали с Селивановским, и знаете о том, что они проповедуют такую мысль: если у вас вода испаряется (или не испаряется), если есть ледниковые растворения или вы палочкой ее прокручиваете...А.Г. Происходит диссоциация. Е.Б. Да. И вы сможете там получить перекись водорода. По крайней мере в дозе 10-9 моля точно. Это, конечно, очень обидное объяснение – если сказать, что все связано только с тем, что от разных растворений, от разных веществ мы будем получать только перекись водорода. Нам удалось показать, как влияет перекись водорода в очень низких концентрациях на рост растительных клеток и на изменения в мембранах – изменяется скорость перекисного окисления и так далее. Это показано. Но что здесь плохо? Здесь получается так, что у меня есть один универсальный фактор, и я пытаюсь им объяснить действия самых разных процессов, которые, может быть, на организм должны были бы действовать одинаково. Можно придумывать такое объяснение, что при разных концентрациях вы находите разные эффекты...А.Г. Вам не нравится, что слишком просто?Е.Б. Да. Но я хочу сказать вот что. Может быть, для гомеопатии это и подходит. Почему? Потому что у гомеопатии громадная практика. Как я говорю, гомеопатия идет от практики. Все науки идут от науки к практике, а гомеопатия – от практики к науке. Но я хочу сказать, может быть, здесь не такое большое количество свойств и не настолько специфически они действуют. Это опять же связано с историей того, как вы проводите исследования. </p><p>Огрубленно можно сказать так. Гомеопат считает, что если вы берете вещество, которое вызывает ожог, то в разбавленном виде оно будет лечить от ожога. И когда вы делаете такой эксперимент, вы же не смотрите на все остальные структуры – как будет действовать ваше вещество. А смотрите только на интересующую вас область. И вам кажется, что действие этого вещества специфично. А, может, все эти вещества в очень разбавленном виде будут действовать именно таким образом. И тогда нам с вами может хватить одного, может, двух каких-то агентов, которые будут осуществлять такого рода функцию.</p><p>Следующий слайд, пожалуйста. Дальше вопрос заключается вот в чем. Есть представления о солитонах, о том, что они так же действуют. Есть представление о долгоживущих кластерах воды, если вы туда добавляете еще какие-то дополнительные... В этой области исследования много талантливых, интересных представлений. Но, как говорят, "знания умножают печали", и если знать, что такие закономерности бывают и при больших разведениях, и при не очень больших, и под действием электромагнитного излучения, то они критику таким большим объемом часто не выдерживают. Я бы сказала, что есть много интересных вещей. Совершенно точно, что это будет развиваться. Хотя сейчас один из самых сложных моментов – это наша техника, которая многое просто не позволяет как следует рассмотреть. Будем надеяться, что наука и практика будут развиваться и в эту сторону.</p><p>Но мы с вами знаем – наука наукой, а практика иногда идет не после выяснения причин, а до этого выяснения. Ведь противоопухолевые препараты искали, когда еще не было известно, что такое рак. </p><p>Так вот я хочу сказать о том, какие здесь есть прямые практические применения. Одно из практических применений это то, что противоопухолевый препарат в малых дозах вызывает те же самые эффекты. Это удивительно. В это не хочешь верить. Я всегда говорю, что я такая же, как и те люди, которые против меня выступают, я также в это не могу поверить. Все мои знания и все привычки восстают против этого...А.Г. И интуиция?Е.Б. Нет, интуиция как раз наоборот. Рассуждая рационально, я понимаю, что этого быть не должно или не может, а интуиция подсказывает, что раз это получается в самых разных областях, значит, есть закономерность, и систематических ошибок трудно ожидать. Видимо, это связано все-таки с какими-то очень глубокими законами жизни, очень глубокими. Потому что когда мы стали смотреть все эти препараты, то оказалось, что препараты, разные по химическому составу, разные по своим свойствам, разные по своим структурам, разные по своему назначению – дают одинаковые эффекты. И причем не только один эффект. Можно было думать, что есть эффект только по дозе – нет. Есть эффект и в зависимости от начальной концентрации, от изменения чувствительности и так далее. И совершенно очевидно, что кое-что из этого очень хорошо было бы уже использовать. Хотя с умом, потому что если до конца всего не знаешь, может казаться, что все будет замечательно, а потом окажется, что это совсем не так. </p><p>Следующий рисунок как раз последний из тех, которые я хотела показать. Это феназепам, о котором я вам рассказывала, который был сделан в Институте фармакологии. В верхней таблице показано, что его активность приблизительно одинакова при различии между концентрациями на пять порядков – немножко хуже в малой дозе, немножко лучше в большой. </p><p>Но очень интересна активность анксиолитическая – против страха. Оказывается, что этот препарат, когда вы его берете в обычной дозе, почти не меняет параметры поведенческих реакций, когда мышь встает, смотрит, ходит. Если вы начинаете работать с этим препаратом, то видите, что маленькая доза на порядок лучше действует как анксиолитическое средство. В то же время большая доза этих свойств не проявляет. Что здесь можно сказать? Это очень интересная область, очень заманчивая. Мне очень обидно, что мы, я имею в виду Россию, не пытаемся как-то отстоять свои приоритеты. Мы только сквалыжничаем со всеми по поводу того, "кто правильно, кто не правильно..." </p><p>На самом деле, важность этой проблемы ясна. Если вы не хотите делать что-то в этой область и разворачивать исследования, значит вы просто в это не верите. Если не верите, вы должны поставить эксперимент в тех организациях или с теми людьми, которые вам могут всё это сделать. Тогда и решите, стоит это делать или нет. Я раздаю препараты с концентрациями 10-14 – 10-15 моля, их проверяют в других институтах, и все равно получают те же результаты. </p><p>Мне очень не хотелось бы, чтобы мы оказались в конце событий. Вот я, например, лично очень хотела бы с наркотиками работать, но вы знаете, там надо иметь специальное разрешение. Мы его не имели. И еще мне сказали: не занимайся этими вещами, кроме всего прочего, тебя наркомафия накажет за это, поэтому лучше не занимайся ими. </p><p>Но я вам скажу, что очень близкие вещи американцы сделали патентами. Они взяли морфин и сделали так, что обезболивающие свойства сохраняются, а привыкание – как там написано – существенно снижено. И у них уже 17 патентов. У нас тоже есть патенты, даже в нашем институте и в некоторых других институтах, на применение сверхмалых доз, но все-таки этого, конечно, мало. Причем, конечно, мы хотели взять более широкие патенты, но, вы знаете, наше государство не любило широкие патенты давать – только на данное вещество, в данном растворителе, в данной температуре – это можешь, а не просто так, чтобы перекрыть воздух всем остальным. </p><p>Я уверена, что со временем эти вещи войдут в нашу жизнь очень и очень широко.А.Г. Но у нас времени осталось мало, поэтому можно я задам вопрос, который, по вашему собственному признанию, вас замучил, но если я его не задам – меня не простят и замучат. Алкоголь?Е.Б. Что я могу сказать? Наверное, те, кто потребляет алкоголь, знают, что если вы будете наперстками пить, то опьянеете гораздо раньше, хотя объяснение здесь будет другое, то есть просто другая проницаемость, так алкоголь быстрее попадает в кровь. Я знаю, что с алкоголем делали работы по токсическому действию. И вот токсический эффект у алкоголя идет по такой же У-образной кривой. При очень высоких дозах есть тот же эффект, что и при малых. Так что тем, кто пьет, конечно, приятно слышать, что в соответствующих концентрациях можно пить, не имея побочного эффекта, ничего не опасаясь. </p><p>Но сейчас сделали очень интересный гомеопатизированный способ разбавления. Они там, по-моему, что-то взбалтывали для потенцирования и так далее, и приготовили спирт в больших разведениях. Он дает очень интересные данные. Очень большие разведения, именно гомеопатические разведения, дают очень интересные данные в области действия на нейроны. Кажется, они оказывают и какой-то антиалкогольный эффект в определенных дозах.А.Г. Всё, приду сегодня домой, буду экспериментировать: капля спирта на ведро воды. При комнатной температуре взбалтывать алюминиевой ложкой.Е.Б. Это не совсем так...А.Г. А какова технология? Ведь обычно критикуют технологию, говорят: "Ну какие там разбавления? – у вас пипетка грязная, вот и всё". А как технологически вы добиваетесь нужного результата?Е.Б. О технологии вот я что хочу сказать. Как вы знаете, гомеопаты говорят, что при разведении обязательно нужно встряхивать раствор и вообще там есть целая церемония: как надо стоять, какое выбрать направление.А.Г. Это уже скорее ритуал.Е.Б. У нас никто ничего не встряхивает. Все готовят по-разному, в том смысле, что кто-то палочкой стеклянной, кто-то немного встряхивает... Но все эти данные воспроизводятся. Конечно, когда мы начинали и нас мучили этим – грязная пипетка, грязное то, грязное это. Но есть некоторые меры: мы промываем эти пипетки этим же раствором, потом заново уже его берем. Потом мы пробовали применять метод радиоиммуноанализа. До концентрации, до которой этот метод применим. Это, по-моему, 10-13. Мы разводили, а потом смотрели, есть ли это вещество в такой концентрации, приблизительно...

gordon: Современная палеонтология

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Алексей Юрьевич Розанов– член-корреспондент РАН</li></ul><p><strong>Александр Гордон: ...и почему она уже требует обновления?Алексей Розанов: Саша, если позволите, я начну с того, как общество воспринимает, вообще говоря, палеонтологию. А.Г. Любопытно.А.Р. Буквально вчера я посмотрел фильм, который был сделан о нашем институте. Начинается фильм с опроса людей на улицах Москвы. Простенький вопрос: что такое палеонтология? Надо сказать, что из десяти опрошенных только один школьник лет 10-12 ответил и достаточно точно ответил, что это наука о ископаемых животных и растениях. Но есть вторая сторона дела, это как воспринимают палеонтологию не на улице случайные люди, а те, которые к науке какое-то имеют отношение или отношение имеют к власти или что-нибудь в этом духе. Они воспринимают это занятие как некое подобие филателии или нумизматики. Люди собирают какие-то ракушки, кости, какие-то предметы.А.Г. "Черт знает, чем занимаются".А.Р. Да. И систематизируют их, раскладывают, ящички у них такие, коробочки и так далее. Но на самом деле это гораздо более серьезно, чем может показаться на первый взгляд. Потому что, во-первых, ни одна наука, которая занимается развитием жизни на Земле, не могла бы доказать, что эволюция не обратима, если бы не было палеонтологии. Вообще для многих смежных наук, и биологических, и геологических палеонтология чрезвычайно полезна, как таковая, для развития. У палеонтологии есть и прагматический смысл. </p><p>Я как-то уже рассказывал: мы с академиком Борисом Сергеевичем Соколовым, когда написали лет 15 назад статью про палеонтологический музей, коснулись вопроса о том, сколько денег вообще нужно на содержание такого института, как наш. А это самый престижный институт в области палеонтологии в мире – не только в нашей стране, но и в мире. Так вот на содержание такого института нужно всего лишь навсего столько денег, сколько на одну глубокую нефтяную скважину. А не-употребление данных, которые производит институт и другие палеонтологи в нашей стране, заставляет тратить гораздо больше денег, по крайней мере, процентов на 15-20. То есть представляете, сколько можно было бы содержать таких институтов, и сколько можно было бы сэкономить денег на любые другие цели.А.Г. Рентабельное у вас производство.А.Р. Но дело в том, что никто особенно этим не интересуется. И парадокс состоит в том, что наши нефтяники не очень интересуются тем, что делается в Палеонтологическом институте.А.Г. Хотя казалось бы...А.Р. Да. А вот нефтяники, скажем, австралийские или американские, они интересуются. Потому что они знают этому цену. Я не буду дальше развивать эту тему, потому что это вообще больной вопрос со всеми нашими нефтяными делами, использование нефти и так далее. </p><p>Теперь есть третий аспект. Третий аспект состоит в том, что, вообще говоря, до тех пор, пока мы с самого юного возраста не начнем людей учить тому, что изучает палеонтология – учить, конечно, не в том объеме, как мы сами занимаемся, а в объеме школьного и университетского курса, – до тех пор мы всё равно не сможем сделать культурного человека, который бережно относится к биосфере. Потому что до тех пор, пока это не осознанно, не поймет человек, что то, что сегодня мы имеем вокруг, создавалось миллиарды, сотни миллионов лет, что это нужно очень беречь. </p><p>И поэтому, когда директор какого-нибудь завода сбрасывает в речку какие-нибудь отходы химического производства или что-нибудь в этом духе, то совсем не обязательно, что он стервец. Он может быть просто абсолютно неграмотным человеком. Когда человек стоит на остановке троллейбусной или трамвайной и бросает сигарету или там плюет, он тоже не совсем понимает, что он делает. Лучше этого не делать. Из этих мелких штришков складывается отношение к окружающей среде, к биосфере. А биосфера – это очень своеобразная вещь, она ведь в нас не заинтересована, биосфера существовала без нас и будет существовать без нас, и её задача-то вообще с нами расправиться, как можно скорее, потому что мы уродуем ее. Значит, палеонтология имеет, безусловно, огромное значение прагматическое, научное и чисто человеческое, воспитательное. </p><p>А теперь несколько слов о том, что палеонтология существенно менялась последние, скажем, 10-15 лет. Классическая палеонтология, она остается, она очень нужна, это всё очень правильно. Но палеонтология столкнулась с необходимостью заниматься совсем другими вещами, скажем, не только слонами, брахиоподами, моллюсками и так далее. Ведь в истории Земли существует огромный промежуток времени, когда этого ничего не было, и где мы должны искать какие-то подходы, потому что всё равно остается палеонтологический метод, самый точный для датирования возраста, по крайней мере, для фанирозойской части или последней части – от 600 миллионов лет – шкалы. Потому что, если мы не знаем семь восьмых истории Земли, то наши выводы по многим параметрам, научным и практическим, очень хлипкие. Поэтому некоторое время тому назад родилась палеонтология докембрия. Автор этого термина, и очень мощная фигура, которая продвигала это направление, это академик Б.С. Соколов. Сегодня, кстати, я его видел на заседании Бюро, он ещё здравствует, ему 90 лет исполнится вскорости, через несколько месяцев.</p><p>Это направление, палеонтология докембрия, развивается очень активно. И сейчас вообще произошли серьезные сдвиги, потому что, скажем, 15-20 лет тому назад никто бы не решился сказать, что бактерии сохраняются в ископаемом состоянии так же, как кости, ракушки и так далее. А оказалось, что они не только сохраняются, но они сохраняются изумительно, и ничуть не хуже, чем сохраняются другие ископаемые, которые имеют раковину, кости и так далее. </p><p>Теперь я всё-таки пойду сверху вниз. Знаете, сегодня мы имеем такую привычную фауну, когда даже дети отличают слонов от, скажем, гусениц, бабочек и так далее. Но такой более менее современный вид вся органика приобрела не так давно. Земля-то существует 4,5 миллиарда лет, а этот современный вид начал складываться всего-навсего 550-600 миллионов лет тому назад. </p><p>На картинке, которую сейчас вы видите, показаны первые скелетные фауны. Это приблизительно 550-600 миллионов лет тому назад, когда очень многие организмы приобрели возможность строить скелет. До этого почти их не было. И большинство этих ископаемых имели фосфатные скелеты. Не очень выгодная энергетически система, потом всё больше становилось ископаемых с карбонатными скелетами. Эта фауна очень интересная, название её – Томмотская, и это было достижение нашей российской, советской тогда науки – выяснение того, что есть такой момент, когда животные в массе приобретают возможность строить скелет. </p><p>Если мы пойдем дальше вглубь, то столкнемся со следующей фауной, где в основном тоже нормально развитые организмы. Это многоклеточные организмы, животные, но они все не имеют скелета. Сейчас на картине вы можете посмотреть некоторых представителей этой фауны, они близки к червям, медузам, может быть, к кишечно-полостным. Это знаменитая Вендская или Вендо-эдиокарская фауна. Впервые она была описана в Австралии, потом огромное местонахождение, сейчас богатейшее в мире, было найдено на Белом море. У нас в институте занимаются этим, и кстати, у истоков описания этой фауны в России тоже стоял академик Б.С. Соколов, а сейчас член-корреспондент М.А. Федонкин, который его заместил на посту заведующего лабораторией, и целая плеяда молодых людей, которые работают в институте. </p><p>Но обычные представления, которые вы увидите в учебниках, сводятся к тому, что отсюда начинается реальная жизнь многоклеточных. На самом деле это оказалось совсем не так. Древнее Венда были обнаружены многие ископаемые. Некоторые из них я проиллюстрирую. Сейчас на картине вы увидите такие похожие на червяков кругленькие колечки. Это так называемые грипании, они были описаны из Верхней Рифии, то есть порядок цифр – 700 миллионов лет. </p><p>Но когда это 700 миллионов лет, и когда это метафита, то есть эвкаритические многоклеточные организмы, но все-таки растительного происхождения, это всё еще мало интересно. Но совсем недавно, несколько лет тому назад эти же организмы, эти грипании были найдены в отложении с возрастом в 2,1 миллиарда, что означает, что представления наши о том, где у нас начинаются многоклеточные в истории, должны быть серьезно изменены. </p><p>Но если мы пойдем дальше, то следует сказать, что было много забыто, много было известно уже давно, но как-то не обращали внимания. Некоторые вещи наши коллеги игнорировали, поскольку это было найдено на нашей территории, тут всякие приоритетные моменты имели значение. Сейчас вы можете видеть на картине очень интересные вещи, это 1 миллиард 900 миллионов, но это метазоа. Это, скорее всего, кишечно-полостные, но может быть, это и полихетного типа существа, то есть черви. </p><p>Если это черви, то это более высокая организация. Но и кишечно-полостных достаточно: миллиард 900 миллионов, а у вас уже организм, который...А.Г. Является многоклеточным животным.А.Р. Да. То есть это вообще – будь здоров. На протяжении всего времени существования этих организмов, и других аналогичных, существуют ещё так называемые акритархи. Может быть, можно показать картинку с акритархами. Это одноклеточные, планктонные формы, они достаточно понятны по многим признакам. Это эвкаритические организмы, и они у нас находятся во всём проторозое, то есть от приблизительно двух миллиардов с лишним, и до кайнозоя, то есть до того момента, когда вымерли динозавры. Они хорошо сохраняются, потому что это всё состоит из органической субстанции, которая не поддается разрушению кислотами. Это легко выделяется из пород и потом изучается под микроскопом.</p><p>Теперь ещё несколько слов о других организмах, которые были найдены в древних породах. Сейчас вы видите на картинке очень любопытные трубочки, это трубочки, вероятнее всего, бактерий, возрастом в 3,5 миллиарда. Это было описано несколькими исследователями, это были Шопф, Френсис Вестол. Эти трубочки, кроме всего прочего, описаны из очень похожих на стромотолиты образований, а стромотолиты обычно считаются цианобактериальными холмами. И если это стромотолиты и это трубочки, то тогда нужно думать, что это возраст 3,5 миллиарда – уже цианобактерии.А.Г. Кислородная атмосфера.А.Р. Конечно. И представляете, что дальше. Дальше цианобактерии, а это, вообще говоря, среди бактерий одни из самых сложных организмов. </p><p>Вы правильно сказали насчет кислорода. Эти открытия начинают входить в противоречия с очень многими фактами, которые обосновывали концепцию невозможности присутствия кислородной атмосферы в это время. Но я как-то обратил внимание на рисунок, который вы сейчас увидите на экране. Здесь с левой стороны – зерна уранинита, а с правой стороны – зерна современного пляжа Австралии, где добывается минерал моноцит. Я этот снимок видел многократно, много лет, и как-то совершенно не обращал на него внимания. А соль в том, что уранинит, если он окатанный, а здесь показан вроде бы как окатанный уранинит, не может сохраниться в такой форме, если в атмосфере есть кислород, тогда он должен перейти в другую форму окислов урана.А.Г. То есть это основной аргумент в пользу бескислородной атмосферы.А.Р. Один из основных аргументов. Там были и другие аргументы, но этот считался очень сильным аргументом. И вдруг я обратил внимание на то, что, посмотрите, под этим уранинитом стоит шкала 0,1 миллиметра, а под зёрнами современного пляжа Австралии стоит другая шкала. Зёрна уранинита, это около 0,1 миллиметра, зёрна моноцита – 0,2 миллиметра и больше, а по форме они похожи. Но люди, которые это напечатали и которые так аргументировали эту позицию, забыли о том, что 0,15 миллиметра – это граница окатываемости. Если есть у вас какой-то обломок меньше, чем 0,15, то он будет остроугольный. Значит, то объяснение, что уранинит – это окатанные зёрна, не корректно. Значит, нужно искать какое-то другое объяснение. Я не знаю этого материала и не видел его в микроскоп, но я подозреваю, что это, вообще говоря, бактериальные сгустки, поэтому они имеют такую форму. Мы очень часто встречаем такого рода образования. </p><p>А на следующей картинке с пляжа Австралии, обратите внимание, все зёрна остроугольные, никаких окатанных зёрен нет, а всё, что вы видите круглое, это не зёрна обломочные, а живые фораминиферы. </p><p>Подведя некоторый итог, можно было бы составить таблицу, которую, я надеюсь, нам тоже покажут. Здесь черным показано появление разных по степени организации организмов. Взято это из книги Шопфа, которая была издана где-то порядка 20 лет тому назад. На тот момент было известно то, что показано черным. Надо сказать, что и сейчас в основных учебниках вы увидите приблизительно то, что нарисовано черным. А серым – те данные, которые были получены в последнее время или реабилитированы из тех, которые были известны, но на которые не обращали внимания. Обратите внимание, что, скажем, грибы (здесь они серым нарисованы) появляются, по крайней мере, уже два с лишним миллиарда лет тому назад. У Шопфа вообще грибов никаких не было. </p><p>Значит, появились очень интересные возможности сейчас. Обратили внимание на то, что есть следы синусоидного типа. Следами мы много занимались в интервале Вендт-Кембрий, а в древних породах не очень занимались.А.Г. То есть не самими останками, а следами.А.Р. Следами, следами ползания. Если след имеет сложную, витиеватую форму, типа не очень правильной синусоиды, то это означает, что это организм, (это сантиметровые размерности, конечно, а не микронные, там другие будут закономерности) целоматный или целомный, т.е. с целомом. А мы такие следы находим в нижнем Рифее, может быть, в основании среднего Рифея, по крайней мере, это миллиард 200, миллиард 300. То есть это похлеще, чем то, что я говорил про организмы, которые называются удаканиями, которые были кишечно-полостные. После коррекций, которые введены здесь, возникает очень много сложных проблем. Во-первых, если так рано появляются целоматы, всякие эвкариоты и так далее, то о том, что где-то на трех миллиардах ещё была восстановительная атмосфера, говорить не приходится.</p><p>На следующей картинке, которую я могу показать, изображено то же самое по распространению организмов, но дана предполагаемая кислородная кривая. Показано, как возрастало участие кислорода в нашей атмосфере. А с левой стороны зубчиками показаны крупнейшие оледенения в докембрии. Я хотел бы обратить внимание на самый нижний зубчик. Это архей, это почти 3 миллиарда. Я как раз на днях беседовал со специалистами, которые занимаются этим. Сегодня на заседании Бюро отделения наук о земле этот вопрос тоже всплывал. Это настоящие ледниковые отложения. Обычно в наших учебниках говорится, что в это время на Земле была бескислородная атмосфера и температуры средние по планете были 60 градусов. Сегодня – где-то десяток. А тогда 60 – средняя по планете. Значит, там выжить ничего вроде как не может. </p><p>Но некоторое спасение в этом зубчике есть, потому что, если были ледниковые отложения, значит, была климатическая дифференциация. Значит можно представить себе, что какие-то организмы в оазисах такого типа развивались и могли продвинуться очень серьезно. Мне представляется, что была сначала прокариотная или прокаритическая биосфера до определенного момента, потом была некая промежуточная биосфера, когда появлялись эвкариоты, но они не были доминантами, и потом сформировалась нормальная уже эвкаритическая биосфера, с которой мы сталкиваемся и сегодня. И я считаю, что количество кислорода в атмосфере с момента появления настоящей эвкаритической биосферы было тем же, что и сегодня.А.Г. Значит, 500 миллионов лет назад.А.Р. Да, где-то 550, 600 миллионов лет, к этому моменту уже уровень кислорода был высоким. Он, конечно, колебался потом. Там, на рисунке, есть колебания. Одно связано с накоплением железистых кварцитов, этих огромных залежей железа, например, Курской магнитной аномалии. По многим материкам мы наблюдаем такие породы. А.Г. Примерно два миллиарда лет назад.А.Р. Около двух миллиардов, два миллиарда, миллиард 800. Наверное, спад кислорода в этот момент происходил. Конечно, эта кривая интуитивная, посчитать это очень трудно. Хотя профессор Сорохтин, в Институте океанологии, считает, вводя в свои формулы разные параметры. В частности, мы иногда с ним обсуждаем как раз возможность иной интерпретации, иных подсчетов, и в последнее время он уже получил кривую, которая довольно близка к тому, что здесь нарисовано. </p><p>Я хотел бы ещё несколько слов сказать совсем о другом. Возможность изучать ископаемые бактерии открыла совершенно удивительные возможности и в палеонтологии, и в смежных науках. Вообще говоря, классическая палеонтология употребляется для стратиграфии, она и для нефтяных дел очень полезна. А бактериальная палеонтология для стратиграфии почти бесполезна. Нитки, шарики, они, понимаете, и в Африке нитки и шарики. Но любопытно то, что она открывает огромные возможности в переосмыслении седиментологических проблем. </p><p>На картинке, которую, я хотел бы, чтобы вы посмотрели, видно: верхняя картинка, это современная цианобактерия, а на нижней образец из фосфоритов, которые имеют возраст 550 миллионов лет. Обратите внимание, какая изумительная сохранность. Это один из первых снимков вообще, который был получен для фосфоритов. Иногда мы задумываемся о скоростях самих процессов. Если это сохраняется в таком идеальном виде, значит, это должно было быстро окаменеть. Потом всё это было подтверждено в лаборатории, в эксперименте у академика Заварзина. Было показано, что действительно фосфатизация идет очень быстро. Это считанные часы, и поэтому они сохраняются практически в любых породах. Если можно, следующую картинку покажите, пожалуйста.А.Г. Это фосфатизация пленки.А.Р. Да, да, фосфатизация самих бактерий, трубочек. Это разорванный цианобактериальный мат. Если мы возьмем обычную лужу, когда она покрывается зеленью, потом высыхает, эта корочка лопается и скукоживается. Вот это как раз это самое и есть, только разница с лужей состоит в том, что здесь возраст – 600, 550 миллионов лет, и посмотрите, какая идеальная сохранность этого скукоженного мата. И следующую картинку, если можно. Обратите внимание, это современные цианобактерии, трубочки, или округлые тельца, между которыми находятся полисахаридные пленки. Толщина этих пленок, скажем, 10-20 нанометров всего-навсего. А нижний правый снимок, видите, там эта же пленочка с дырками, это опять кембрий, опять 500 с лишним миллионов, и толщина всего-навсего 10-20 нанометров. То есть вы представляете, какие деликатные вещи могут сохраняться именно за счет такой огромной скорости фоссилизации. </p><p>После того как мы получали такие результаты, естественно, мы задумывались над вопросами уже седиментологическими. Конечно, если вы, скажем, находите сохранившиеся в породе следы ряби или следы передвижения динозавров или ползания каких-нибудь моллюсков, или червей, то вы можете быть уверены, что они ползали по осадку, который весь насквозь пронизан этими полисахаридами, и, соответственно, там жили бактерии. Потому что, если бы там была бы стерильная среда, это просто был бы осадок из обломков, скажем, кварца, эти следы бы не сохранились, их спокойно бы размыло и всё. А они сохраняются только потому, что фиксируются полисахаридами.</p><p>На следующем снимке я хотел бы вам показать бактерии, которые окружены такой темной каймой. Эта тёмная кайма – глинистые минералы. Сейчас становится ясно, что глинистые минералы не обязательно образуются от разрушения горных пород и сносятся в виде обломочной тонкой фракции. Бактерии могут на наружном чехле или в чехле образовывать аутигенные глинистые минералы. И если 20 лет назад Лавенштам прописал в книжке где-то около 20 довольно тривиальных минералов, которые могут образовываться с помощью бактерий, то сегодня их уже 120, и среди них попадают такие: кварц, кристобалит, полевой шпат, глинистые минералы и так далее. Поэтому представления наши о том, из чего состоит осадочная порода, в ряде случаев должны меняться. Я не хочу сказать, что все глины образуются только аутигеным путем. Нет, конечно, пропорции здесь будут разные. Но когда мы имеем тоненькие прослоечки... А.Г. Живой глины.А.Р. ...То, как правило, мы там сразу находим очень хорошо сохранившиеся бактерии. Это вне всякого сомнения. Поэтому здесь возникает такой вопрос. Если в прошлом мы имеем огромное количество мелководных бассейнов, которые по глубине находятся в пределах фотической зоны, т.е. в зоне проникновения света, то они должны были быть пронизаны насквозь бактериями. И следовательно, процесс отложения и диагенеза (преобразования) осадков, должен был идти обязательно при участии бактерий, и при очень активном их участии. И это заставляет сейчас думать, что многие модели седиментации в древних мелководных бассейнах (к сожалению, сегодня нет таких) должны быть пересмотрены, должны быть созданы заново. </p><p>Теперь о метеоритах. Вы знаете, очень бурные споры идут по поводу того, что в метеоритах правда, что не правда. Конечно, та фотография, которую опубликовал Д. Маккей со своей компанией в "Сайенс" и в "Сантифик Америкон", не самая удачная, если не сказать, что просто не удачная. Когда я был в Хьюстоне у него в лаборатории, я имел возможность посмотреть весь материал, и был изумлен тем, что они опубликовали совсем не то, что надо было напечатать. Одну из фотографий я здесь сейчас быстренько покажу. Но потом случилось так, что мы нашли в Ефремовке некоторые образования, похожие на те, что нашли американцы в Мурчесоне. </p><p>Видите, идет тоненькая ниточка поперек снимка, и диаметр, строение её, конструкция, ничем не отличается от нормальных бактерий, и вообще говоря, сомнений в том, что это бактерия, нет. То есть невозможно предложить альтернативное толкование этой морфологии. Можно предположить, что, скажем, это засорение. Но мы уже сейчас вместе с некоторыми коллегами из НАСА провели кучу всяких экспериментов, и мы знаем, как распознать засорения. А.Г. Если бы в земной породе это обнаружили, то не было бы никаких сомнений, что это?А.Р. Никто не стал бы спорить, что, конечно, это бактерия. А здесь спорят, потому что это метеориты. Это нормальное мышление, "в метеорите не может быть, поскольку, этого не может быть никогда". Но мы научились различать засорения, каждое засорение обязательно дает в анализе ванадий, калий, хлор, такие элементы, которые в метеорите или практически отсутствуют или отсутствуют совершенно. Но для меня самое убедительное было то, что сейчас покажут на картинке, это метеорит Оргей, а внизу современная бактерия. Обратите внимание, что внутри и того, и другого тела расположены такие черные точки. Это кристаллы магнетита. Для меня это был последний момент, когда я перестал сомневаться, что действительно мы в метеоритах имеем псевдоморфозы по бактериям. Конечно, это всё окаменевшее, конечно, это всё очень древнее, и, наверное, многие вещи старше, чем Земля. Но во всяком случае, для меня это было очень важно.А.Г. А размеры схожи?А.Р. Абсолютно нормальные земные бактериальные размеры. Если можно ещё несколько картинок – это пары земных и неземных объектов. Здесь на каждой паре, верх – это какой-то земной объект, либо ископаемый, либо современный, а внизу – объект из метеорита. Сегодня мы подобрали уже порядка ста с лишним таких пар, и будет опубликован атлас вместе с насовскими нашими коллегами, и мы скажем: ребята, теперь ломайте голову как хотите по этому поводу, мы своё дело сделали. Это так же, как когда я однажды выступал, и мне сказали: нанобактерий быть не может, потому что туда невозможно уложить весь геном. Я сказал: поскольку сегодня мы знаем, что нанобактерии существуют, и я видел это собственными глазами, то как укладывать туда геном, этим вы занимайтесь, мне уже не надо, я пошел дальше.</p><p>Покажите подряд все картинки, все четыре.А.Г. Как в детской игре, найди два отличия.А.Р. Это просто потрясающее сходство. Конечно, можно набрать много земных объектов, которые будут очень похожи на ископаемые бактерии и образования из метеоритов. Но я всегда привожу такой пример. Если, скажем, человек, который не занимается палеонтологией, будет смотреть на выложенные на столе две бедренные кости, одну – динозавра, а другую – мамонта, и если они сходных размеров, то ведь неспециалист никогда в жизни не скажет, где динозавр, а где мамонт. Когда люди говорят, что это похоже на что-то – это прежде всего недостаток опыта рассмотрения таких объектов. Да, они очень сложные, и они очень простые. Но есть, знаете, много всяких мелких деталей, которые указывают на то, что это не может быть неорганикой или, наоборот, органикой. Точно так же, как когда мы исследуем земные объекты. </p><p>Этот снимок задержите, пожалуйста, на экране. Когда мы исследуем земные объекты, естественно совершенно, мы тоже сталкиваемся с проблемой толкования – шарик, ниточка, биогенный, абиогенный. Но нам помогают продукты, которые они производят. Изучая бактерии, можно изучать практически все месторождения полезных ископаемых. И сейчас можно утверждать абсолютно смело, что осадочные месторождения полезных ископаемых возникают обязательно при участии бактерий, и без бактерий не могут быть. Это так же очевидно, как то, что здесь на полу или у нас на руках, на штанах, на лампах, везде обязательно есть бактерии, почти непрерывные тоненькие пленочки, они есть везде. И поэтому, сегодня мы должны себя немножко переломить в восприятии научного материала, когда мы очень спокойно рассуждали о том, что идет механическое осаждение или что-то химически формируется. Вы знаете, я думаю, что практически даже в солях, в доломитах, мы везде имеем следы деятельности бактерий, и это нужно обязательно иметь в виду как руководство к действию, к переработке наших концепций. </p><p>Может быть, я немножко увлекаюсь, и даже наверняка. Наверное, в каких-то случаях я выдаю желаемое за действительное. Я думаю, что какое-то, достаточно большое количество ошибок в рассуждениях моих коллег, которые этим занимаются, имеет место быть. Но не видеть, что это серьезный процесс, что, вообще говоря, бактерии играют огромную роль во всех геологических процессах, сегодня, по-моему, уже невозможно.А.Г. Существование ископаемых бактерий в метеоритах всё равно ведь только косвенным образом может подтвердить теорию панспермии. Потому что пока не найдено ни одной живой бактерии, верно ведь?А.Р. Это верно. Но я вам скажу, что, вообще говоря, сама теория панспермии и исследование метеоритов (даже если в отношении бактерий это материал достоверный), они не вполне, так сказать, соприкасаются. То есть соприкасается, но одно другое не вполне оправдывает и подтверждает. Потому что это немножко всё-таки разные вещи. Существовали, скажем, какие-то бактерии на планетах типа Фаэтон, – одна из версий, считающаяся более менее фантастической, хотя я не вижу здесь больших фантазий. Или какие-то планетные тела в других системах, не обязательно солнечной. А.Г. Тот же Марс.А.Р. Нет, не обязательно солнечной даже. Потом они были разрушены, принесены. Но это ещё не говорит о том, что панспермия имеет место быть. Это говорит только о том, что жизнь существовала раньше, она была в других местах, образовалась не только на Земле и так далее. Точно так же, когда появились первые наши публикации, мне говорили: "ну, теперь вы доказали, что бактерии были принесены на Землю". Я говорю: "простите, ничего общего". Принесены остатки бактерий, которые окаменели давным-давно, а могут ли они быть принесены в живом виде, это уже вопрос. Правда, я думаю, что могут. Сегодня антарктические работы по сохранности бактерий, по вечной мерзлоте, ясно показали, что несколько миллионов лет бактерий могут находиться в анабиозе. Решается проблема транспорта – в ледяных кометах, скорее всего, можно принести. Но я так далеко не иду, понимаете, я уже так находил много в разные стороны, что... А.Г. Напомните мне, пожалуйста, самые ранние находки эвкариотических организмов.А.Р. Сегодня в породах с возрастом 2,7 обнаружены стиролы, которые говорят о том, что, возможно, это эвкариоты. Но когда мы разговаривали с академиком Добрецовым, он говорит: "а ты уверен, что они инситные?", то есть в том, что они там и были? Может быть, эти органические соединения откуда-нибудь мигрировали? В принципе, это возможно, но по той геологической ситуации, представить это трудно. Какой-то элемент миграции мог быть, но не более того. Если 2,7 – стиролы, то, скорее всего, эвкариоты, это уже 2,7. Мне это не удивительно, я думаю, что будет доказано и более раннее их появление. А.Г. Но это очень сильно меняет эволюционную теорию.А.Р. Конечно.А.Г. То, что направление эволюции неизменно, она необратима, это доказывается наукой, о которой мы сегодня говорим. А темпы эволюции можно рассчитать? Понять – они движутся линейно или есть какая-то зависимость от всей этой сферы?А.Р. Люди, которые занимаются молекулярными часами, ведь и рассчитывают темпы эволюции фактически из постулата, что всё это должно происходить равномерно. Я не специалист в этой области, но я в это не верю. Я думаю, что вряд ли это было так. Но, знаете, я думаю, что для сегодняшнего дня необходимо воспользоваться и такой линейкой. И потом, сравнивая те данные, которые получает палеонтология, и молекулярные часы, можно решить, где здесь какие промахи, можно ли действительно опираться на эти данные всерьез или они как-то должны быть откорректированы. </p><p>Но. Здесь очень важно другое. Расчет появления определенной организации животных или растений, или вообще эвкариот, с помощью методов, которыми строятся молекулярные часы, конечно, возможен, и это очень важно.А.Г. Спасибо огромное. Удачи вам.

gordon: Космос будущего

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Гречко Георгий Михайлович– доктор физико-математических наук.</li><li>Платонов Александр Костантинович– профессор, доктор физико-математических наук.</li></ul><p><strong>Александр Гордон: ...вся вот эта практика и романтика этого взлета была необходима. Он же был страстным последователем Федорова. Он верил в физическое воскрешение всех умерших, и не мог не задать себе вопрос, а где же они будут жить-то после того как воскреснут? И вот тогда возникла идея – надо немедленно найти и колонизировать планеты, уничтожив на них все, что там могло быть, чтобы освободить место для будущих жизней всех этих воскресших. Это, конечно, наивно, теологично, но это был первый посыл. А потом все так или иначе развивалось в этой парадигме, простите меня за научное слово, потому что если не колонизировать планеты, то уж найти – точно – полезные ископаемые. И горизонт все время расширяется – мы сможем долететь туда, мы сможем долететь сюда. И вот наступил XXI век...Георгий Гречко: Циолковский сформулировал так: "Найти бездну могущества и горы хлеба".Александр Платонов: "Человечество не останется вечно на Земле" и так далее.А.Г. Да, да, да. Так вот, мне-то кажется, что совершенно понятно на сегодняшний день, поправьте, если я ошибаюсь, что человечество останется вечно на Земле, что самые грандиозные космические проекты никого на этой Земле счастливее не сделали. Что этот романтический порыв к звездам – "И на Марсе будут яблони цвести" – он все-таки сменился таким практическим взглядом на ближайший космос с его естественными совершенно плодами, тем, что он дает – и связь, и разведку, можно перечислять достаточно долго.Г.Г. А мне понравилась другая идея, что Марс когда-то имел такие же условия существования, как и Земля. Но потом случилась какая-то катастрофа, и он потерял атмосферу, потерял почти всю воду. И нам нужно лететь на Марс, разобраться, почему это случилось, потому что то же самое может случиться с Землей. Надо найти противоядие, и когда это случиться с Землей, перебраться на Марс.А.Г. Вообще, были, я даже где-то читал об этом, очень серьезные планы терроризации Марса, вплоть до заселения его какими-то...Г.Г. Да, модуль за модулем соединять между собой.А.П. Но все дело в том, что сейчас уже есть в Америке фирма, которая торгует...А.Г. Землей на Марсе?А.П. Нет, на Луне. И стоит это около 45 долларов за 7 соток. Пожалуйста.А.Г. За 7 – не за 6, а за 7?А.П. Да, именно 7 соток. А вообще, я думаю, что все дело в том, что, конечно, была мечта, люди смотрели в небо. И ждали этого. А сейчас это стало обыденно. Когда первый спутник запустили, ведь толпа стояла на площади Маяковского, я это видел, и смотрела в небо. А сейчас никто на это внимания не обращает. Это превратилось в обыденность просто.Г.Г. Но все-таки, знаете, что я хочу заметить, чтобы оправдать Циолковского и сказать, что не все обыденно, и что меня потрясло. Вот этот утопавший когда-то в грязи домик, это Россия еще, и изданный Циолковским за свои деньги труд, маленький, на серой плохой бумаге. И название – "Причина космоса". Я вот доктор физмат наук, я такую задачу даже не могу поставить, а он ее обсуждает, решает.А.П. Естественно, мысль идет впереди, это верно.Г.Г. Так что еще осталось в космосе, что можно искать.А.Г. А все-таки, давайте попробуем разобраться, что осталось в космосе? Потому что уже совершенно понятно, что затраты, связанные, например, с пилотируемым полетом на Марс, как бы близко он не обсуждался и не планировался, они, скорее всего, никаких особых результатов не принесут. Г.Г. Подождите, у американцев есть совершенно конкретный план, который сейчас более-менее вырисовался, где-то к 2014 году совершить пилотируемый полет на Марс. Причем, когда говорят о том, что дорого, то один человек посчитал, что если в Советском Союзе 100 миллионов работающих и каждый даст на эту программу 30 рублей, то уже набирается сумма вроде бы годная на это.</p><p>А я еще иначе говорю, пусть каждая страна сократит военные расходы всего на 1%, при этом никто не пострадает, потому что все одинаково сократят, а этого как раз хватит на пилотируемый полет на Марс. Так что не так уж и дорого...А.Г. А зачем пилотируемый полет на Марс?Г.Г. Сейчас скажу. Кроме того, когда американцы затратили 20-25 млрд. долларов на Луну, они вернули больше, потому что на технологиях, которые были разработаны для этого полета, они заработали потом больше.А.П. Это, вообще, конечно, одно из достоинств космических программ всех стран – развитие технологий. К слову сказать, когда Никсон в свое время, после того как американцы вернулись с Луны, уменьшил финансирование НАСА, то Агню (вице-президент США), в конгрессе выступал и говорил как раз о полете на Марс, и о том, что одна из целей – это развитие технологий, которые потом уходят в народное хозяйство. И мы могли бы в связи с этим много примеров привести того, что было у нас в стране, – от хотя бы первых "липучек" на пиджаках и до более серьезных вещей.</p><p>А главное, он говорил, что у нации должна быть великая цель, которая объединяет людей. И для них тогда это было полет на Луну, а теперь на Марс.</p><p>Но я должен сказать еще одну вещь. Вот смотрите, летят корабли к Марсу, летит корабль к Сатурну, к спутникам Сатурна. Уже сейчас фактически освоен околоземной космос, причем это мониторинг Земли, это наблюдение, скажем, за парниковым эффектом на Земле – страшен он или нет? А на Венере? На Венере – 500 градусов и 90 атмосфер. И это то, что, вполне возможно, ждет Землю. Об этом можно долго говорить – о результатах парникового эффекта. Совсем немножечко времени остается, чтобы этого не было.Г.Г. Есть три разных пути: беспилотные аппараты, пилотируемые, и беспилотные, но обслуживаемые космонавты, как "Хаббл". И просто для каждой задачи – своё. Для задачи навигации, конечно, простые спутники, беспилотные, там человек не нужен. Но для отработки полета Марс – как без человека отрабатывать полет человека на Марс в течение нескольких лет? А "Хаббл" наиболее эффективен при больших затратах, потому что, когда потребуется ремонт, человек должен полететь и отремонтировать. Это тоже доказано. Вот и всё. То есть для каждой задачи – свое техническое решение.А.П. Вот показано – жизнь на Венере, эти 500 градусов, это сделал автомат. Правда, автомат дистанционно управляемый – не полностью автомат. Я как раз специалист в робототехнике, кроме того что баллистик, и ответ на вопрос очень непрост. Вот смотрите, что мешает быть автомату? Надежность. Сейчас спутники работают 3 года, 5 лет, 10 лет. Рекорд – 31 год работал их "Вояджер", который сейчас уже улетел из Солнечной системы. 31 год – это рекорд. А так, в общем, на геостационарной орбите спутник – 10 лет, а дальше это мусор.Г.Г. А давайте возьмем другой вариант – "Хаббл", на который было затрачено то ли 12 млрд. долларов, то ли 19, и он сразу не заработал, потому что у него была ошибка в оптической системе. И спасло только то, что там было предусмотрено, что может человек прилететь, закрепиться и заменить. Они прилетели, поставили как бы очки, и телескоп заработал – теперь мы имеем массу таких данных, которых до него не имело человечество, только благодаря тому, что было предусмотрено, когда все нормально – он работает в автомате, когда ломается – все приспособлено, чтобы прилетел человек.А.П. В общем, посещение, конечно, лучше, чем жизнь.Г.Г. Да, обслуживание, посещение.А.Г. Все-таки я хочу повторить вопрос, может быть, чуть-чуть его скорректировав, чтобы можно было на него ответить. Вы сказали, что у нации должна быть великая мечта. И вы считаете, что у американцев великой мечтой может быть сейчас полет на Марс. Мне кажется, что у них несколько сместились ценности. Они занимаются более земными делами, особенно после 11 сентября, после тех злополучных событий. И эта космическая романтика остается уделом все-таки очень немногих. Если не брать во внимание задачу выполнения такой что ли "программной миссии" – "Человек на Марсе", то зачем человеку лететь на Марс?Г.Г. Тогда ответьте, зачем человек вышел из пещеры? Зачем сел на бревно, переплыл через реку? Зачем опустился в Марианскую впадину? Зачем полез на Эверест? Зачем Линдберг перелетел океан и стал обладать такой славой, которая ему потом во вред пошла? Вы вот этот вот процесс считаете случайным, когда всю жизнь человечество все шло и шло куда-то вперед? Просто следующий этап – Марс, потом, может быть, звезды. Это не остановить. Нет, если мы опять залезем на деревья и у нас отрастут хвосты, то пожалуйста.А.П. Есть более серьезные темы. Да, конечно, человечество стремится. И есть примерно 15% человечества, которые в любой ситуации вкалывают и чего-то хотят. Это генетический фонд, это американские исследования, можно более подробно рассказать. Так вот, эти люди, конечно, всегда являются как бы пружиной в обществе. А общество в целом, безусловно, не хочет жить в замкнутой квартире. И потому плыли в море, был принц Генрих, младший сын португальского короля, которому ничего не светило, но судьба сложилась так, что он получил в руки наследие тамплиеров и они придумали каравеллы. И он заставил этих дрожащих людей плыть в сторону, в открытый океан, в условиях невидимости берегов, а к чему это привело? Бразилия. Колумб тоже был португалец. И в конечном итоге, конечно, есть очень серьезные философские соображения на эту тему, а именно, не может общество жить в закрытом мире. Оно будет открывать его, так или иначе. И, конечно, сначала хотели в море, потом в небо, потом в космос. Сейчас, может быть, под землю захотим, потому что земля тоже, так сказать, для нас годиться.Г.Г. И еще один путь – в себя. Мы ведь не знаем себя. Вот говорят, что мозг у нас только на 5% задействован, а зачем остальные 95? Мы не знаем ответа даже на совсем простой вопрос – зачем мы спим? И что такое сон? И не зря же сказано, что нет ничего более прекрасного, чем звездное небо над головой и внутренняя гармония внутри. Так что можно идти куда хочешь. Но идти надо, кто не идет? Вот свинья, у нее шея такая, только вниз может смотреть, но она останется свиньей. Вот если мы когда-нибудь перестанем смотреть на небо, у нас тоже потом шея не будет никуда поворачиваться.А.П. Жора, я хочу перебить, сейчас показан астероид Эрос, куда прилетел в свое время американский полуавтомат, потому что у него было дистанционное управление, это был подвиг на самом деле. Он кружился вокруг него, и в конце концов, на него приземлился, приастероидился. Так вот, есть астероидная опасность. И мы должны уметь бороться с этим. Сейчас мы этого не умеем, никто не умеет. Очень многие этим занимаются, большие деньги под этот страх вкладываются. Но страх на самом деле существует – вот Тунгусский метеорит был и так далее. </p><p>Но с астероидами связано еще одно. Крайне важно долететь до астероида. У нас будет, может быть, слайд, мы увидим наш отечественный проект по полету к Фобосу, потому что Эрос малоинтересен, он такой же реголитный, как Луна, это переделанная микрометеоритами поверхность, которая не хранит истории возникновения. А вот надеются, что именно Фобос, спутник Марса, и астероиды другой группы хранят реликтовое вещество. </p><p>Сейчас существует две геологические теории, которые борются друг с другом. У Земли масса не соответствует ее объему. Она должна иметь другую плотность, чем плотность коры, поэтому считается, что ядро очень тяжелое. Так вот это ядро – то ли это металл (никель, железо и так далее, которое магнитное поле создает), то ли водород, как на Юпитере. И добыть реликтовое вещество и подтвердить ту или другую теорию, это крайне важно. Для этого, собственно, и организуются полеты. И вообще, развитие науки не может руководиться только вкусами общества, вот тех 60 или 80%, которые не являются пружиной. Они, так сказать, с удовольствием будут смотреть в небо, а когда это станет обычным, то перестанут смотреть. И их нельзя винить.</p><p>Вот как раз показывают этот Фобос, тот камешек, который, на самом деле, отвечает на вопрос: наша нефть бесконечная или конечная? И только космос дает ответ на этот вопрос.</p><p>Академик Тимур Магаметович Энеев, который работает у нас, в свое время...Г.Г. Потрясающий ученый.А.П. ...используя теорию Шмидта, сложил на компьютере из пыли Солнечную систему. И у него как раз получилось, что Земля, скорее всего, гидроксильная, что там, скорее всего, все-таки водород. Тем более что он все время из земли прет – метан и так далее, а откуда он берется, непонятно. А.Г. И все-таки, если говорить о космосе будущего, какие перспективы у него? То есть, по каким направлениям будут развиваться космические исследования?А.П. Так можно ответить. Появился сложнейший аппарат "Протон". Я смею утверждать, что в эту машину вложено интеллекта гораздо больше, чем, скажем, в "Фауст" Гете или даже во все произведения Шекспира. Это произведение большого числа людей, работающих большое время – если просуммировать, что там внутри. А это, на самом деле, довольно простая вещь по сравнению с тем, что должно быть впереди. Потому что если мы хотим покорить космос, не только околоземное пространство, которое действительно должно быть покорено, и оно уже почти покорено, а что-то дальше и большее, то, безусловно, это должно развиваться. И оно развивается. Развивается все время.</p><p>Ионные двигатели, солнечные паруса, которые позволяют сейчас, даже не тратя топливо, обогнать американский "Вояджер". Впереди, конечно, большие исследования. Вот "Буран" наш. Казалось бы, вещь, может быть, не очень нужная, потому что задач для нее, как считается, нет. Шаттл тоже показал свои возможности, но он намного дороже, чем обычные одноразовые ракеты. Но дело в том, что "Буран" садился автоматически. Г.Г. С первого раза! Я не верил, что он с первого раза сядет. Отклонение – 8 минут.А.П. Это был научный подвиг, научно-технический подвиг. Такой же, к слову сказать, подвиг был – достижение Северного Полюса ледоколом, который взломал все льды. Если бы это сделали в Америке, то на весь бы мир раструбили. У нас это осталось незаметным. Но это был рекорд.</p><p>Но все дело в том, что прошли времена Ньютона, Пастера, прошли времена, когда один человек может сделать большую вещь. Теперь это делается только большими коллективами за большие сроки: 10 лет, 50 млрд. долларов. Тогда решена задача. </p><p>А вот более простые задачи, они уже, так сказать...Г.Г. А у Алферова не было таких миллиардов, а Нобелевскую получил. Так что иногда мозги еще дороже долларов.А.П. Он был один? Можно сказать так про Герасимова, вот это действительно было открытие – человек нашел новый способ. Но это случается крайне редко. А серьезные проекты, если мы говорим про космос, даже про полет в околоземное пространство, не говоря уже о Марсе, требуют других усилий. Вот "Буран" – это 1100 предприятий. И на каждом работает порядка 1000 человек в среднем. И они все должны работать одновременно над одним и тем же делом. Причем, у каждого свои интересы, и эти вектора должны иметь проекцию на общую цель.А.Г. Но ведь так и не полетел "Буран".Г.Г. Как?!А.Г. Я имею в виду – в космос.Г.Г. Он полетел. А.П. Он полетел и вернулся.Г.Г. Он не только полетел, он сел автоматически, чего американские шаттлы не могут.А.Г. А он раз выходил в космос?Г.Г. Конечно, и более того, когда он шел на посадку...А.Г. Это я помню.А.П. Там пришлось такой маневр совершить, который не ожидали.Г.Г. Да, идет доклад: удаление от точки посадки – 3000 км, отклонение – что-то около 80 км, а ширина полосы – 100 метров. Проходит минута – удаление 1000, отклонение 40 км в другую сторону. И он сам разворачивается, без пилота, садится. Отклонение было 80 км, стало буквально 3 метра, и в длину метров 10. Это такое техническое достижение, которое американцам и не снится.А.Г. Да, и что дальше с этой программой?А.П. Не было решения отменить "Буран", а просто прекратили финансирование. А теперь уже все развалилось. Поэтому здесь дальше ничего. А что дальше с шаттлами, жизнь покажет. Это старый спор, как вот в энергетике – тепловые станции или гидравлические?Г.Г. Или атомные.А.П. Старый спор – куда деньги важнее пускать. Так и здесь – возвращаемые пилотируемые полеты или же... А.Г. Многоразовые.А.П. ...одноразовые – пусть даже пилотируемые. Или посещение, как Георгий Михайлович говорит, в общем, это старый спор.</p><p>Вот, между прочим, интересный слайд – на тему, как работать людям в космосе. Человек там нужен, потому что автомат не все может сделать. Не может автомат взять спутник, который вращается. Ставят человека с манипулятором, и он его останавливает в конце концов руками, только тогда его можно положить назад в трюм и вернуть.</p><p>А то, что возвращаемые системы должны быть для того, чтобы их можно было вернуть на Землю, – это тоже техническая необходимость. </p><p>Вот, между прочим, слайд, какой, думали, будет космическая станция, и какая она на самом деле получилась. И это тоже проект Циолковского. А он совсем не похож на то, что произошло. Г.Г. А почему так получилось? Это все предназначено для того, чтобы вращать, и так создать искусственную тяжесть, чтобы человек мог выжить. А полет нашего врача Валерия Полякова, проведшего полтора года в космосе без искусственной тяжести, решил проблему – не надо лететь на Марс, закручивая корабль. Это удешевляет и упрощает проект в несколько раз. А.П. А, вообще, трудно в космосе жить? Потому что вопрос стоит о том, полетят ли люди на Луну, к звездам. На этой станции трудно жить?Г.Г. Я скажу так – когда к нам прилетел Володя Ремек, чехословацкий космонавт, и первый раз сходил в туалет, он там долго провозился, а выйдя сказал: ребята, я и до сих пор вас уважал, но теперь уважаю еще больше. А.Г. Но если говорить все-таки о вещах гораздо более важных, чем, скажем, биотуалеты в космосе. Мы с вами как-то говорили об этом – радиационная защита. Полет на Марс – это не неделя и не две. Полет на Марс – это выход за пояс Ван-Алена. Полет на Марс – это та самая солнечная батарея, которая неизвестно куда стрельнет и еще каким зарядом. Поэтому, как американцы собираются решить, скажем, этот вопрос? Насколько это утяжелит и сделает более дорогим проект? Я это пока себе слабо представляю.А.П. Жизнь покажет. Г.Г. Это очень сложная проблема, потому что можно сделать свинцовое убежище, но оно само потом может дать наведенную радиацию и тебя оглушить. Так что это может быть даже и риск. Но риск был, когда человек выходил из пещеры, и когда переплывал речку на бревне. Риск был всегда. По-моему, это только подогревает интерес к движению человечества дальше. Как повезет. У нас на борту были такие препараты, что если нас застанет солнечная вспышка, (а дальше пойдут уже не только солнечные вспышки), то по указанию с Земли надо принять этот препарат. Так что, что-то есть, но стопроцентной гарантии даже, говорят, страховой полис не давал.А.П. Я хотел бы добавить. Было упомянуто об условиях невесомости и т.д. Медицина очень развилась на этих задачах.А.П. Причем, более того, если говорить о будущем, если действительно думать о лунных базах, о длительных полетах к Марсу или даже дальше, то в конечном итоге нужно создавать замкнутые системы, которые сами себя регенерируют. То, что сделала природа на Земле. И вот к этому космос толкает, без этого ничего не будет. </p><p>Хотя есть очень интересный рассказ одного моего знакомого о том якобы, что как раз те службы, которые делали системы жизнеобеспечения космонавтов, показывали ему (он видел это своими глазами) некий генератор огурцов – на Земле, который питается специально теплом и холодом, который, оказывается, тоже нужен, чтобы вегетативные реакции шли правильным образом. И дальше туда подается энергия, и урожай в несколько раз больше обычного. И это все тоже продукт этих систем жизнеобеспечения. То есть, если мы хотим куда-то далеко лететь или где-то долго жить, то это нужно уметь делать.</p><p>Я еще хочу одну вещь сказать. Космос позволяет делать еще одно, но, правда, с помощью автоматов, – избавляться от радиоактивных отходов. Американцы в свое время экспериментировали в этом отношении с "Вояджером". Раз в 200 с чем-то лет повторяется такая возможность, когда все планеты так устанавливаются, что одним полетом можно пролететь мимо всех их. Мы не захотели это делать, а они это сделали – молодцы. Но главное – они на этом полете должны были сделать то, что позволит потом реализовывать освобождение от ядерных отходов. </p><p>Если пролететь около Юпитера на небольшом расстоянии, то он разгоняет и выбрасывает из Солнечной системы то, что мимо него прошло. Значит, вот есть способ, но его надо тоже делать: а) надежным; б) автоматическим, и это тоже перспектива. </p><p>Не знаю, покорили мы космос или нет. Мы его покорили около Земли. А в дальнейшем все-таки его надо открыть.Г.Г. Циолковский сказал, что человечество не будет вечно жить в колыбели. Я считаю, что мы просто пока выглянули из колыбели, мы из нее даже не вылезли.А.П. Безусловно. От того, что сейчас, до того, что на самом деле надо – огромная дистанция. </p><p>Есть еще одна задача интересная – все-таки проверить теорию Эйнштейна. Ведь можно разогнать солнечным парусом или другим каким-то двигателем, без людей, разогнать что-то до скорости света и потом попытаться вернуть назад – это тоже грандиозная задача. Она не сегодняшнего дня, это задача далекого будущего, но при этом можно будет все-таки проверить: правильна теория Эйнштейна или нет, как там идут часы, что в этом случае с атомами и молекулами происходит. Пока это только математические расчеты и некоторый опыт, который доказывает правильность этой теории в макромире и в микромире. А.Г. А какие технологии, кроме солнечного паруса, могут разогнать космический корабль любого размера до больших скоростей?А.П. Хороший вопрос. Представим себе, что у нас есть свет обычного фонарика, мощность карманного фонарика или намного большего прожектора, энергия, которая добывается, конечно, из солнечной энергии, с помощью солнечных батарей – а дальше уже, возможно, ядерными реакторами.</p><p>Но, так или иначе, этот свет создает малую тягу, но оказывается, что если малая тяга – в граммы – действует безгранично долго, то создаются гигантские скорости. Это фотонный двигатель. Г.Г. Еще электрореактивный двигатель.А.П. Да, они уже испытаны как двигатели ориентации на наших...А.Г. Электрореактивный двигатель? А что это, каков принцип его действия?Г.Г. Вот в 2007 году на нем собираются лететь?А.П. Да, но, тут есть хороший слайд, может, стоит отвлечься на минуточку. Есть альтернативные варианты освоения околоземного пространства. Вот скажем, американцы недавно запустили этот воздушный шар. Это две тонны веса на высоте 40 км, и он за 100 суток собирает данные о 90% земной поверхности. Вот такие вот шары. И есть самолеты, которые летают на высоте 30 км на солнечных батареях. Г.Г. Без топлива.А.П. Это еще опытные образцы, конечно. То есть, околоземное пространство можно наблюдать не только из космоса. Но космос – он тоже позволяет много. И, в общем, вот эти альтернативные варианты нельзя забывать.</p><p>А если говорить про электродвигатели, то у нас, в нашей стране, сейчас разрабатывается очень хороший проект, на 2007 год он нацелен. Его разрабатывают 4 организации, это МПО имени Лавочкина, ИКИ, Геохим, институт имени Виноградова бывший, и, наконец, наш Институт прикладной математики – вот как раз показывают нужный слайд. </p><p>Это очень интересный проект – полет за реликтовым веществом к Фобосу. И вы можете увидеть на слайде эти большие солнечные батареи. Они создают энергию, которая разгоняет рабочее тело, нейтральный газ, ионизирует его за счет электрических сил, разгоняет до больших скоростей. Потом для того, чтобы этот объект не зарядился (если вылетит заряженная частица, останется заряд в самом корабле), он отбирает, сажает назад эти отобранные электроны в ионы, и уже эти атомы, превратившись снова в нейтральные, улетают с большой скоростью. </p><p>И вот эта тяга позволяет долететь до Марса, сесть на Фобос, затем взять там грунт и вернуть его на Землю. Причем полет к Марсу с возвратом к Земле для человека крайне неприятен тем, что для того чтобы лететь назад на Землю, на Марсе около года надо ждать, пока Марс и Земля займут такую позицию, когда можно лететь с Марса на Землю. А вот на малых тягах не надо ждать, потому что аппарат медленно разгоняется, и время уходит как раз на разгон, и аппарат возвращается к Земле, когда надо, причем с вопросами точности все получается хорошо. Вот так работают электрореактивные двигатели.А.Г. Вопрос к вам как к баллистику, а к вам как практику. Скажите, пожалуйста, вот даже когда американцы в автоматическом режиме сажали "Аполлон" на Луну, и то задержка в 2 секунды создавала достаточно большие проблемы. Сигнал идет секунду туда, секунду обратно, за это время картина уже меняется. Какова задержка при полете на Марс или на Фобос? Как сажать в автоматическом режиме?А.П. Да, мы этим подробно занимаемся. Во-первых, американцы сажали не в автоматическом режиме. Сажал Армстронг, и это намного проще, чем сажать так, как мы сажали. Г.Г. Начали посадку автономно. Не с Земли сажали, а автономно.А.Г. Это одиннадцатый...А.П. Там сидел летчик, профессионал, и он сажал как надо. А вот наши системы сажались автоматически. Но они, опять же, сажались по той информации о дальности и скорости, которая поступала к ним от трех лучей радиолокатора.Г.Г. Земля не участвовала, поэтому задержек минутных не было. Это все автономно на корабле происходило.А.П. Но тем не менее, Марс – это задержка сигнала от 4 до 40 минут. И все-таки эти системы, хоть они автоматические, но Земля их подробно поддерживает. Без поддержки Земли ничего невозможно. Вообще-то говоря, все марсоходы имеют всего лишь 5 команд: вперед, назад, направо, налево и вызов Земли. Вот вызов Земли – это на случай, когда что-то неизвестно. </p><p>И это замечательная задача для науки, для теории управления – как управлять автоматическим объектом, но в то же время дистанционно управляемым, с большими задержками в канале связи. Он должен быть настолько автоматическим, чтобы решать свою задачу сам, и в то же время человек должен иметь возможность вмешаться.</p><p>Наши сотрудники замечательно управляют роботами через Интернет, с задержками передачи информации, соизмеримыми, в общем, с теми, что на Марсе. И там как раз отрабатываются эти двухуровневые системы: внизу автоматическая и человечья где-то на другом конце.Г.Г. Практически мы выходим на задачу создания искусственного интеллекта – уровни, подуровни...А.П. Да, искусственный интеллект – это серьезная вещь, конечно. </p><p>Вот Марс, посмотрите. Набор камней. Пустыня такая же, как на том полигоне, с которого мы делали запуски на Марс.Г.Г. Да, или как на Камчатке...А.П. Да, когда мы услышали, что американцы сфотографировали Марс, мы были на том полигоне в районе Байконура и я спросил: "Ну, и что же там?" А мне говорят: "Такая же пустыня, как и здесь". </p><p>Вот, видите, условия жизни на Марсе – ноль градусов в самом хорошем случае, и, говорят, что иногда бывает 10, где-то в районе экватора. А так минус 60, минус 100, и атмосфера, как на высоте много десятков километров, 5 миллибар. Плюс – пыльные бури.А.Г. Вот я и спрашиваю: что же должно произойти на Земле такого, чтобы мы спасались на Венере, где 500 градусов, на Марсе, где минус 100 или на Луне, где нет атмосферы?А.П. На Венере мы не будем спасаться. Венера нам должна показать, на самом деле, как избавиться от того, что на ней – парниковый эффект и так далее.Г.Г. Венера – это такая страшилка, чтобы человечество поняло, что к чему.А.П. А спасаться можно на Луне, поэтому говорят о лунной базе. Может быть, на Луне человечеству надо спасаться... А потом ведь есть ещё одно обстоятельство. Народонаселение растет – сейчас уже 6 миллиардов. И не похоже, чтобы тут что-то менялось. Правда, Римский клуб и некоторые другие модели предсказывают где-то в 2017 году, плюс минус 2 года, полный коллапс, потому что не будет хватать ресурсов, загрязнение среды и так далее, и народонаселение должно уменьшаться. Но в конце концов, из-за того что человечество растет, ему надо будет расширяться. И будет освоена, в конце концов, может быть, и Луна. Если человечеству придется где-то когда-то искать убежище, то к этому надо быть готовым, хотя бы на уровне бумажных проектов и каких-то их первых реализаций.Г.Г. Есть еще одна интересная идея, которую я не сразу понял. Оказывается, если на орбите вокруг Земли находится завод и его надо снабжать сырьем – то с Луны снабжать сырьем его проще и дешевле, чем с Земли. Потому что Луна меньше, и разгонять надо меньше.А.П. Это проект российского специалиста, он опубликован в журнале "Земля и Вселенная". Г.Г. Очень так неожиданно.А.Г. Но всё-таки, в ближайшие годы чего вы реально ждете от космоса, особенно учитывая ситуацию с шаттлом, с МКС, с тем, что у нас появилась некая перспектива монополии по доставке космонавтов и грузов на орбиту?Г.Г. Ну, это не серьезно. Это продлится полгода, год, а потом всё вернется на свои места. Это просто некая аварийная ситуация, и мы будем доставлять туда не трех космонавтов, а двух, они будут только обслуживать станцию, наука пока остановится, а потом всё вернется. Европа делает спасательный корабль. Никакой монополии не будет. Так что это временные трудности.</p><p>Но эти трудности показывают, что как ни старались доказать, что многоразовые корабли лучше, а в этом практическом споре победили одноразовые. Потому что одноразовый корабль каждый раз новый, свежий. А "Колумбия" летала 20 лет. Вот я трижды спускался из космоса на Землю – это тряска, это бешеные перепады температур. И как можно было 20 лет эксплуатировать этот корабль, забывая, что он каждый раз проходит через ад? И не зря специалисты говорили, что их пора уже остановить, в частности, "Колумбию", и чуть ли не до президента пытались добраться, чтобы остановить их эксплуатацию. </p><p>Так что многоразовые корабли хотели сделать дешевле, а получилось дороже, а сама многоразовость сейчас повернулась своей обратной стороной.А.П. Так или иначе, я думаю, будет развиваться околоземной космос, будет развиваться станция, с её посещением и жизнью на ней. И, конечно, будут развиваться полностью автоматические системы дальнего космоса. И они принесут, они и сейчас уже приносят очень много интересного. Сейчас ищут жизнь на спутнике Юпитера Ио, потому что он покрыт льдом, и за несколько пролетов обнаружили, что это действительно лед, он ломается притяжением Юпитера, и видно, что это под ним океан, а значит вода, значит, жизнь.Г.Г. А жизнь там ищут, потому что на Земле жизни нет. Разве это жизнь?А.П. Это верно. Но с другой стороны, найти жизнь где-то ещё, хоть какую-то, это значит сильно продвинуть науку. И конечно, будет развиваться именно космическая робототехника, я в этом глубоко убежден. Она, с одной стороны, а) интересна; б) нужна. И мысль работает, и будут результаты. Я не знаю, будет ли это лунная база или будут это более умелые космические аппараты. Потому что есть задачи, которые только автомат может решить. Когда человек не может работать? Когда он слишком быстро должен действовать или когда слишком долго и это одно из обстоятельств, почему человек, так сказать, должен меняться с автоматом.</p><p>Есть и еще одна задача – космический мусор. Мы ведь можем закрыть открытую дверь. Сейчас вокруг Земли в космосе растет количество остатков всех пусков, которые там были. И если частота пусков не будет уменьшена, а она не уменьшается, то космос загрязнится настолько, что опасность столкновения с этим мусором возрастет необычайно.Г.Г. Одна из гипотез гибели "Колумбии" – столкновение с мусором.А.П. Я знаю, что однажды Георгий Михайлович видел, как мимо него пролетел метеорит. Это так?Г.Г. Было дело. Я вёл связь с Землей, мимо пронесся метеорит, вспыхнул и сгорел. Но поскольку пробить станцию вместе с человеком может и крошка, а этот был довольно приличный, то я невольно сказал что-то вроде "ой", а Земля услышала и говорит: "Чего ой?" Я говорю: "Метеорит вот рядом пролетел и сгорел подо мной". "Ну и чего "ой?"". Я говорю: "Ну как чего? Во-первых, говорю, красиво. Во-вторых, мимо".А.П. В общем мусор – это проблема. Потому что есть высоты, это как раз средние высоты между геостационарами и теми околоземными, на которых все летают, где он не исчезает. На низких орбитах он постепенно падает на Землю, и есть скорость его падения и возобновления. А на геостационарных орбитах, за счет притяжения, за счет сжатия Земли и действия Луны, орбиты меняют наклонение и уходят из плоскости экватора. И тогда только иногда они пересекают плоскость экватора, но не сидят всё время там. А вот на средних высотах, там количество мусора только растет. А через него летают. Люди боялись лететь через пояс астероидов, который находится между Марсом и Юпитером, и американцы очень гордились, что они первыми через него пролетели. А теперь мы будем бояться, возможно, лететь и около Земли.Г.Г. Надо открыть людям тайну. Всё-таки пояс астероидов – это планета, которая разрушилась или это несформировавшаяся планета?А.П. Есть и то, и то. Есть несколько групп астероидов. Вот Фобос, он на фоне Марса здесь показан, это явно какой-то осколок несформировавшейся планеты. А вот, скажем, околоземная группа, тот же самый Эрос, к которому летели, – считается, что это осколок большого, крупного тела. Он был развален в результате...Г.Г. То есть он не сформировался, но потом разрушился.А.П. А сам пояс астероидов (потому что астероиды не только в поясе находятся) – в основном считается, что это несформировавшаяся планета.Г.Г. Хотя многие думали, что Фаэтон, который, согласно легенде, разрушился.А.П. Да, никакой это не Фаэтон. Вот посмотрите, как его бьют. И вообще, почему эти астероиды такие гладкие? Или вот у Георгия Михайловича в руках фотография Луны, которую сделали американцы. Если её можно показать, то было бы интересно. Луна – какая она гладкая. Почему она такая? Это такая же эрозия, как на Земле в результате работы атмосферы, воды, Солнца или пыли. Так микрометеориты долбят, вот уже сколько-то миллиардов лет, 5, 6 или 4 миллиарда лет долбят эти поверхности, это следы их ударов. И, в конце концов, сглаживают поверхность.Г.Г. Но тогда давайте поставим точку в споре – отпечаток американского ботинка на Луне сделан в Голливуде или на Луне? Возражение такое: в песке никогда не получается такого четкого отпечатка, как американцы сняли. Значит это фальшивка. На самом деле там нет песка, там реголит... В чём отличие? На Земле песок всё время перемещается, ветер его обрабатывает, и он становится круглым. И поэтому, если в него что-то впечатать, за счет того что песчинки – круглые, они осыпятся. На Луне нет ветра, жесткие лучи делают эту песчинку реголита, наоборот, похожей на ежика. И поэтому когда в поверхность из таких игольчатых ежичков что-то впечатается, ботинок, например, он уже так и остается четким. Так что это не фальшивка, это действительно ботинок астронавта.А.П. Да, но, кроме того, на Земле работает сила тяжести в 6 раз большая, чем на Луне. На Земле естественный уровень откоса – 40 градусов, как у наших железнодорожных насыпей. На Луне за счет того что сила тяжести меньше, намного более крутой уровень откоса. И, естественно, это всё делает возможным такой отпечаток.Г.Г. Но там нет песка, а там есть реголит. А.Г. Но это было не единственное возражение по поводу пребывания американцев на Луне, а только одно из. Но всё-таки давайте...Г.Г. Американцы на Луне были. Хотя, может быть, кое-что подсняли. А.П. Не знаю, подсняли или нет, но мы видели, как они прыгали. На Земле так прыгать нельзя, просто не получится.Г.Г. Да, вот говорят, "так нельзя прыгать". Оденьте скафандр и попрыгайте так на Земле! Г.Г. Скафандр ведь надут. Это как стальной панцирь рыцаря, и какие могут быть прыжки в нём. А.Г. Последний у меня вопрос, наверное, потому что время подходит к концу. Нам стоит ожидать появления на орбите нашей собственной, российской орбитальной станции? Или МКС – это теперь дом родной для всех народов, которые так или иначе стремятся в космос? Этот вопрос не столько, наверное, технологический, сколько ещё и политический. Ведь постоянное выдавливание нас с МКС – оно происходит, и будет происходить. Будет у нас свой дом в космосе или нет, в ближайшее время? А.П. Если это зависело бы от нас, он бы был. Г.Г. Он будет у нас, только китайский.А.Г. Так, так, так. А китайцы готовят свою станцию?Г.Г. Конечно. Ведь вы поймите, американцы привязали к своей МКС все страны. Потому что любой национальный проект был более эффективен в отношении цена/качества, что "Фрифлаер" во Франции, что "Зенгер" в Германии, и надо было всё это отнять и стянуть на МКС, чтобы не было видно, что те проекты дешевле и намного эффективнее с точки зрения науки. И всех в МКС кнутом и пряником загнали. И только китайцы на МКС бросили 2% и продолжают делать свою национальную программу.А.П. Они уже в конце года собираются ее запустить.</p><p>В общем, будет или не будет наш космос развиваться, зависит от нашего будущего. А какое наше будущее? Знаете, прогнозировать будущее просто нельзя... Г.Г. Ни один прогноз будущего, как мы проверяли, не оправдался.А.П. Нет, есть замечательные...

gordon: Технологии виртуальной реальности �

12.11.2003 12:38, 181&nbsp;месяц назад
<h4>Участники:</h4><ul><li>Афанасьев Валерий Олегович– кандидат физико-математических наук (Центр управления полетом, г. Королев)</li><li>Томилин Александр Николаевич– доктор физико-математических наук, профессор (ИСП РАН)</li></ul><p><strong>Александр Гордон: Давайте начнем с определения.Александр Томилин: Давайте. Конечно, нужно определить понятие виртуальной реальности, а вместе с ним и, конечно, сам термин виртуальность. Всегда мы знали, что мир, материя – это объективная реальность, данная нам в ощущениях. Это означает, что мы получаем через свои органы чувств определенную информацию об окружающем мире. </p><p>Так вот, если мы подменим информацию об естественных объектах информацией об искусственных объектах, это тоже будет мир, данный нам в ощущениях через наши органы чувств. Но вот это и будет мир виртуальной реальности. Мир, созданный компьютерными средствами. Такая трехмерная среда, иногда говорят 3D-среда, в которой достаточно реалистично ощущается окружение. И это окружение достаточно реалистично реагирует на присутствующего наблюдателя, исследователя, участника этой сцены. </p><p>Слово "виртуальный" имеет очень много значений. Одно из них, взятое из словаря компьютерной лексики, изданного в Петербурге в 1999 году, говорит о том, что виртуальный – это несуществующий, воспринимаемый иначе, чем на самом деле есть. В то же время термин "virtualis" латинский означает "мнимый, несуществующий".</p><p>Вот это понятие "виртуальный" наиболее подходит в данном контексте понятию "виртуальная реальность". Потому что есть и другие понятия. </p><p>В англо-русском словаре на 50 тысяч слов сказано, что это слово означает "реальный", И, кроме того, еще одно его значение "поистине, воистину". Это определение не подойдет здесь. Оно исторически, видимо, возникло в обиходе народов. И вот попало на страницы словаря.А. Г. Если я правильно понял, мы говорим об искусственно созданном мире или части этого мира, который воспринимается нами или нашими органами чувств как мир реальный.А. Т. Да, как мир реальный, хотя на самом деле это искусственный мир.А. Г. В таком случае у меня сразу будет вопрос, который, может быть, несколько уведет нас от темы беседы, но мне очень важно понять принципиальную разницу, если она есть. Чем мир первого бала Наташи Ростовой, созданный Львом Николаевичем Толстым и воспринимаемый и переживаемый внимательными читателями как реальный мир хотя он никогда не существовал, он такой же виртуальный, как компьютерная программа отличается от той реальности, которую мы сегодня обсуждаем?А. Т. Тут, раз мы уходим в сторону, можно уйти еще чуть-чуть дальше, а потом вернуться к вашему вопросу. Ведь идеалисты – они говорили о том, что мир существует таким, каким наше сознание его себе представляет.А. Г. Про это и спрашиваю.А. Т. Писатели, конечно, придумывают свой мир, разумеется. Но это не совпадает с тем, о чем мы говорим. Потому что это просто придуманный мир, в котором они не контактируют, ну, скажем так, реально, физически. То есть здесь нет понятия "реальность", нет непосредственной реальности взаимодействия испытателя.А. Г. То есть, если можно было бы дернуть Наташу за косичку в этом мире, то это был бы тот самый мир, о котором мы говорим.А. Т. Тогда это был бы тот самый мир виртуальной реальности. </p><p>И есть еще промежуточный термин в словаре Ожегова, виртуальный – это "возможный при определенных обстоятельствах". Хотя с этим можно, конечно, поспорить. Все зависит от того, находимся ли мы в пределах нашего понимания "возможный" или нет. </p><p>Ну, например, в системе виртуальной реальности конструируется дом. Это возможно. Мы понимаем, что дом может быть и таким, и другим и так далее. Сконструировать какого-нибудь человека о трех головах? Опять же где-то теоретически, в каком-то мировом пространстве, может быть, такое и возможно, но в нашем понимании это невозможно. Поэтому "возможный" при определенных обстоятельствах тоже может быть подвергнуто критике. </p><p>А вот термин "мнимый, искусственный", это, пожалуй, подойдет лучше всего.А. Г. Но, отрицая термины словаря Ожегова, вы тем самым говорите, что мы даже в виртуальном мире неограниченных возможностей ставим определенные фильтры...А. Т. Вообще говоря, трудно от этого отказаться. От этого очень трудно отказаться.А. Г. Понятно.А. Т. И далее нужно сказать следующее. Раз уж мы сказали про виртуальную реальность и более-менее определили ее как мир, созданный компьютерными средствами, следует сказать и о других злоключениях что ли, или ипостасях термина "виртуальный". Он употребляется сейчас очень часто. В средствах массовой информации употребляется, по телевидению, в газетах, в книгах. </p><p>И тут нужно различать две градации. Первое – это когда он употребляется в своем же смысле, то есть "нереальный". Ну, например, виртуальная вычислительная машина. Это означает машину, предоставляющуюся пользователю как некая новая машина, но на самом деле, она моделируется на имеющуюся машину аппаратно-программными средствами. Например, Virtual Java machine. То есть человек как бы целиком работает в семантике Java и считает, что это и есть его машина.</p><p>И такое всем знакомое понятие как "виртуальная память". Вы представляете себе, что у вас имеется оперативная память для работы вашей программы, для вашей обработки данных, а на самом деле, память вам выделена совсем небольшая, не та, которую вы себе представляете. Ваши материалы находятся не в оперативной памяти, а на следующем уровне носителей информации, на магнитном диске, даже, может быть, на магнитной ленте. И по мере необходимости выполнения вычислений данные поступают в оперативную память. Вы же этого ничего не знаете. Понятие "виртуальный диск" – это ускорение работы за счет того, что ваши файлы на диске попадают и сидят в оперативной памяти, но работа с ними ведется так же, как на диске. Конечно, тогда работа происходит значительно быстрее. Вот это случаи, когда термин "виртуальный", не относится к понятию виртуальной реальности, но совпадает с понятием "мнимый, нереальный".</p><p>А еще термин "виртуальный" – это просто очень расхожая метафора. И даже в глоссарии, который составлен Институтом развития информационного общества Британского совета, где сидят люди, искушенные в области информатики, информационных технологий, имеется несколько определений. Во-первых, "виртуальная реальность", а дальше "виртуальные миры" это фактически те самые, о чем будет идти речь. А дальше есть еще "виртуальное сообщество". Так определяется сообщество людей, взаимодействующих через электронные средства коммуникаций. Но это же реальные люди.А. Г. Это реальные люди.А. Т. Это реальные люди, взаимодействующие люди. Они могли бы точно так же взаимодействовать, как мы здесь. Но только они разнесены, и даже по громкой связи не докричаться им друг до друга. А общаются они посредством электронных коммуникаций. В этом случае, наверное, можно считать, что мистер Шерлок Холмс вместе с другими сыщиками Скотланд Ярда участвовал в виртуальном сыске, поскольку они все время слали друг другу телеграммы.А. Г. То есть здесь даже специалисты создают некую путаницу.А. Т. Да, вот именно, чтобы не было путаницы, надо очень осторожно пользоваться этим термином. Кроме этого, есть понятие "виртуальное предприятие". Но речь идет, конечно, не о создании каких-то материальных ценностей, не о работе за станком, а об общении сотрудников этого предприятия.</p><p>Есть понятие "виртуальный семинар". Это значит, что коллеги, участвующие в этом семинаре, выступают с докладом, задают вопросы, получают ответы через электронное пространство, через пространство на диске. Ничего в этом особенного нет. Даже есть сейчас виртуальные кафедры, виртуальный факультет, где действующими лицами, реальными действующими лицами, являются сотрудники деканатов, сотрудники кафедр, преподаватели, студенты.А. Г. Я же давно говорил, что, скорее всего, возникнет и виртуальный брак в сети, и виртуальные дети...А. Т. В общем, да, если отношения там будут передаваться через электронные средства. Но это все взаимодействие реальных людей, поэтому здесь этот термин используется некорректно.</p><p>Вот сейчас мне пришлось столкнуться с такой вещью и я все время боролся с этим делом, но никак, по-моему, не удается победить. Так вот, во время конференций по информационным технологиям, по информационным системам сейчас очень хороший уровень и большой объем исследований представляют астрономы. </p><p>Они хорошо объединены уже сейчас во всем мире. И термин пошел "всемирная виртуальная обсерватория". И наши подхватили – "российская виртуальная обсерватория". </p><p>Но что это такое? Это на самом деле не что иное, как предоставление времени использования телескопа. При этом интерактивное управление может идти даже из другого места, из другого города, вообще с другого континента, если вам дано время на использование телескопов, вот как у нас сейчас здесь предоставлено время использования студии. </p><p>Или вы получаете какие-то данные, участок звездного неба непосредственно получаете как картинку. Или в какой-то обработке получаете сведения о наблюдении этого участка звездного неба. Это нисколько не виртуально. Потому что раньше вы приходили на обсерваторию и из шкафа брали каталоги, то, что удалось наблюдать...А. Г. Просто изменился механизм получения информации...А. Т. Изменился механизм получения, передачи, влияния, управления.А. Г. Но речь идет о реальных людях.А. Т. Да, речь идет об абсолютно реальных людях. Вот если бы средствами виртуальной реальности удалось бы смоделировать участок звездного неба, смоделировать объект во вселенной – вот это было бы виртуальная реальность. А так у вас просто длинная труба, длинный окуляр, который протянулся, может быть, не на метры, а на километры, на сотни и тысячи километров. И все.А. Г. Я думаю, что разницу мы уяснили, пора идти дальше. У меня возникает, по-моему, законный вопрос: виртуальный мир, в который мы сейчас перейдем, со всеми сложностями, необычностями восприятия его существования, зачем он нужен? Ведь он создан не просто как игра фантазии, а как некий инструмент, с помощью которого – что?А. Т. Совершенно верно. Конечно, очень много применений, очень много применений. А термин существует 20 лет всего лишь. Кстати, термин "виртуальная реальность" был введен сотрудником Эм-Ай-Ти это Массачусетский технологический институт – Ланьером. Он же и музыкант, он же и руководитель некой фирмы по созданию средств дополнений к компьютерам, которые позволяют, собственно, и создавать виртуальную реальность. Перчатка, которая позволяет как бы ощущать контакт с объектом в виртуальном мире, была создана в его фирме. </p><p>И вот считается, что он этот термин привнес, но задолго до него тот же Рей Бредбери в середине века в произведении "Вельд" описал некую квартиру, где есть детская с телевизионной стеной. И вот дети там через эту телевизионную стену общаются с различными персонажами, и родители начинают замечать в детях ожесточенность, потому что там соответствующие сцены разыгрывались через эту телевизионную стену.А. Г. Там свои законы жизни складываются...А. Т. И родители захотели отнять у них эту возможность. Тогда дети сумели поместить родителей в эту комнату и...А. Г. И виртуальные львы разорвали родителей...А. Т. Львы разорвали родителей.</p><p>Что интересно, что в 1996 году с помощью средств компании "Телеком графикс" в комнате с полом из экранов и со стенами из экранов была воспроизведена эта история. И там были вот эти виртуальные львы, только вот они не на кого там не набрасывались.А. Г. Пока.А. Т. А так, конечно, и медицина, и обучение – все это вполне там используется. Клетку вы можете видеть в объемном виде или мозг эти исследования сейчас и проводятся.Валерий Афанасьев: Здесь как-то сам собой разговор пошел о собственно этой технологии. И незаметно мы коснулись интерфейсных устройств.</p><p>И вот, если позволите, я еще потрачу одну минуту на то, чтобы ответить на вопрос, что такое виртуальная реальность в обычных терминах, общепринятых сейчас в технике.</p><p>Если очень коротко, то можно сказать, что это информационная технология, основанная на использовании интерактивных человеко-машинных интерфейсов особого вида. Особенность в том, что в этих интерфейсах естественный раздражитель изолируется от органов чувств и на органы чувств подаются раздражители искусственные, которые генерируются компьютером.</p><p>Здесь возникает еще пара попутных вопросов: а что такое интерфейсное устройство и устройство интерактивное?</p><p>Интерфейсное устройство – это как раз устройство, которое осуществляет взаимодействие между человеком и машиной, причем их можно разделить на две группы. Это устройство ввода информации или команд в машину и устройство вывода результата, получения результата. </p><p>И термин "интерактивный". Сейчас считается, что этот термин уже устаревает. И действительно, если вспомнить, то в 70-е годы основным интерактивным устройство было окошечко, в этом окошечке сидела девушка, она получала пачки перфокарт и через сутки или несколько часов вы получали результат. Но если использовать шоколад, улыбки, так сказать, обаяние, это время можно было снизить до одного часа или нескольких десятков минут. Так вот сейчас интерфейсные устройства, эти машины, они позволяют снизить время реакции в ответ на посылку команды и до получения ответа до нескольких секунд, и даже долей секунд. И собственно, интерактивность она и означает отсутствие ощущения интервала времени, в течение которого машина что-то вычисляет в ответной команде и выдает результат. Из общеизвестных интерфейсных устройств есть одно устройство, которое изначально было использовано в компьютерной технике. Оно используется и сейчас, и еще долго будет использоваться, это всем знакомая клавиатура. Но это устройство, так сказать, вербального общения с компьютером. То есть здесь общение относит знаковый или языковый характер, для общения используется язык машинный или искусственный язык.</p><p>Но есть еще одно устройство, которое появилось недавно, и оно уже ближе к устройствам, используемым в этой области, это "мышь". Здесь уже в компьютер отсылается невербальная информация. Это электрические импульсы, которые позиционируют. И мы видим реакция немедленно.</p><p>Когда произносят сейчас слова "виртуальная реальность", то у всех рождается знакомый образ. Это человек, одевший на голову ящичек и начинающий себя очень забавно вести. Он вертит головой, размахивает руками. И может даже упасть. Это, в общем-то, верная метафора, образ. В этом ящичке расположен стереоскоп, если сказать упрощенно. И человек видит стереоизображение чего-то. Это, так сказать, устройство вывода информации.</p><p>А есть еще устройство ввода. Это сенсорная система, размещенная на голове. Она как раз управляет самим компьютером. Она, эта сенсорная система, выдает информацию о месте положения и ориентации головы. И в ответ на это машина синтезирует изображение. И человеку кажется, что на самом деле он видит некие реальные объекты и может с ними даже взаимодействовать.</p><p>Самые первые опыты в этом направлении были сделаны еще в начале 60-х годов; здесь нужно будет упомянуть одну фамилию это Айван Сазерленд. Это американский электронщик и математик, который работал в линкольновской лаборатории МТИ. Очень многие вещи пришли из МТИ. И он, собственно, первым и начал опыты по использованию графических систем. И даже интерактивных систем. </p><p>Самое первое... Ну, наверное, не самый первый, но один из самых первых интерактивных дисплеев был именно у него. Он имел вид, конечно, не этого элегантного ящика легенького, а была это рама огромная, на которой размещались электронно-лучевой дисплей, оптическая система, которая сводила оси, и можно было этой рамой как-то вертеть и видеть на ней образы.</p><p>Сейчас, конечно же, техника шагнула далеко вперед: мы видим не векторное изображение, а растровое цветное изображение очень высокого качества.</p><p>И здесь, собственно говоря, мы сталкиваемся с еще одной задачей, даже проблемой в этой области. С тем, что в ответ на действия человека, который, так сказать, вращает головой, компьютер должен успевать рассчитать и выдать на дисплей этот самый образ. Если оценить объемы растра, которые нужны для реалистичного восприятия, то эти числа, они, в общем, громадны. Монитор, обеспечивающий реалистичность восприятия имеет обычный растр в миллион элементов изображения. И для того, чтобы обсчитать каждый элемент изображения, нужно некоторое количество операций с плавающей точкой. </p><p>Если это помножить и учесть еще время реакции, за которое компьютер должен успеть, то мы получим довольно большую цифру. Можно сказать еще больше. Дело в том, что если вы смотрите в обычный стереоскоп, то, несмотря на то, что там изображение объемное и необычное, есть ощущение какой-то неестественности. Объекты, которые там отображаются, они я, по крайней мере, это чувствую очень сильно имеют вид каких-то вырезанных из картонок объектов.</p><p>Это все неспроста. Дело в том, что когда глаз в естественных условиях осматривает мир, наши глаза постоянно вращаются в орбитах. Это так называемое саккадное движение. И если взять за основу минимума интервал, за который компьютер должен успеть выдать изображение, то для саккадных движений этот интервал сотые доли секунды. Конечно, системы виртуальной реальности, отслеживающие эти саккадные движения, они, образно говоря, небюджетные. Но, тем не менее, они дают наиболее естественно восприятие. И еще раз об оценках: они составляют, если не углубляться особенно, уровень где-то 1 Гигафлопса, не меньше...А. Т. Один миллиард операций в секунду.В. А. ...с плавающей точкой. Приблизительно в середине 90-х это был нижний уровень производительности суперкомпьютера. </p><p>Отсюда следует очень простой вывод, что системы виртуальной реальности, действительно обеспечивающие вот это все, они являются делом суперкомпьютеров. Это одна мысль.</p><p>А вторая – еще вот какая, как-то она ускользнула, а сейчас вспомнилась. Мы как-то незаметно речь ведем о зрительном восприятии. Но на самом деле из органов чувств у человека есть не только зрение, а еще слух, осязание, обоняние и так далее. И вот устройство, которое воздействуют на органы чувств, – это дисплей. Причем это не только видеодисплеи обычные, но есть еще и дисплеи, которые воспроизводят остальные сенсорные воздействия. А слух, понятно, это стереозвук.</p><p>Кстати говоря, стереозвук – это, наверное, даже вещь более доступная в смысле виртуальной реальности, потому что мы действительно ощущаем объемное звучание, оно соответствует именно той исходной картине, которая была воспроизведена, записана на носитель. А когда мы прослушиваем, здесь есть интерактивность. То есть, если мы вертим головой, то мы ощущаем изменение картины. Следующая группа устройств – это устройства воздействия на ощущения прикосновения. Здесь уже мелькнуло упоминание о "Data Gloves" – это перчатки, которые воспроизводят ощущение касания к приметам. И они, кроме того, используются как устройство ввода информации. То есть очень часто в системе виртуальной реальности есть возможность вывести изображение клавиатуры и этой перчаткой нажать на нужные клавиши.</p><p>Еще одна группа интересных устройство – это силовые жилеты, которые позволяют ощутить вес предметов, центр их тяжести. И особая группа устройств – это устройства, действующие на вестибулярный аппарат. Здесь сложная картина, например, создать ощущение невесомости сложно, потому что помимо аппарата, расположенного у нас в среднем ухе, сила тяжести ощущается еще и мышцами. Здесь нужно говорить об условности ощущения. Устройства, воспроизводящие невесомость, имеют подвеску с шестью степенями свободы и используются в тренажерных устройствах: летных, водительских и так далее.</p><p>Тем не менее, говоря о виртуальной реальности, мы автоматически ведем речь о зрительном восприятии, потому что по объему информации зрительная система с очень большим отрывом опережает остальные системы. Несмотря на то, что если даже не воспроизводится вся гамма ощущений, которая необходима для охвата сенсорной системы, зрительной системе уже достаточно для того, чтобы считать систему системой виртуальной реальности, если она обеспечивает интерактивность, ощущение реализма и так далее. Я бы отметил еще один момент. На самом деле обмануть органы чувств очень сложно. Как бы мы не старались, всегда есть ощущение, что это не реальность. Здесь действует пословица: "обмануть меня не сложно, я сам обманываться рад". Но речь на самом деле идет о другом: для чего это нужно и почему это заинтересовало людей? И здесь есть общий принцип: неинтересные вещи никогда не бывают полезными и наоборот – вещи интересные, вызывающие любопытство, пусть даже не видно сперва их утилитарного значения... Тот самый вопрос: где здесь можно положить мешок с крупой или подключить какую-то динаму, чтобы получать ток...А. Г. Какая от этого польза нашему колхозу...В. А. Тем не менее, если это интересно – рано или поздно это будет очень полезно.А. Т. Я еще хочу сказать о суперкомпьютерах. Сейчас через любую поисковую систему вам сразу будет выдано две-три десятка тысяч ссылок – я не преувеличиваю – на упоминание о приложениях виртуальной реальности. Эти приложения действительно требуют хороших вычислительных средств, но таких, которые сегодня уже можно и купить. Хорошие рабочие станции, возможность и производительность которых когда-то, конечно, были возможностями суперкомпьютеров. Разумеется.</p><p>Так что очень многое можно получить. Есть наши отечественные системы, есть зарубежные. И тем и другими многие пользуются, в том числе КБ Ильюшина, КБ Сухого – да и многие другие, не говоря уж об индустрии развлечений. Но дело в том, что существуют области исследования, где действительно нужны самые современные, самые мощные вычислительные средства – и может и их не хватить. И здесь на помощь должны приходить системы виртуального присутствия, когда часть работы не делается в момент. Вот что это такое.В. А. Да, что это такое. Вот если взять обычную систему виртуальной реальности – если слово "обычная" здесь вообще можно использовать, – то в них виртуальный мир или геометрический мир, если по-прежнему ограничиваться видеосистемой, целиком оторван от реальности. Это абстрактные вещи. Или вещи известные, обычные, но не имеющие никакой связи с внешним миром. Но если снабдить внешний мир... Какой же здесь пример привести? </p><p>Вот на 6-м канале идет программа "Тушите свет", где мы видим виртуальных манекенов Хрюна и Степана. На самом деле, их оживляют операторы. Оператор оснащен специальной маркерной системой, которая может регистрироваться специальной следящей системой, и система актуализирует вот эти виртуальные образы. Они себя ведут не самостоятельно, а подчиняясь всем действиям оператора. В системах телеприсутствия можно выделить несколько основных компонент, которые позволяют использовать эту технологию на пользу. С одной из компонент мы уже познакомились – это маркерная система, которая как-то закрепляется на реальных объектах. Затем – следящая система и система, которая это все визуализирует. Она генерирует образы, которые заранее смоделированы, это известная геометрия. И в итоге мы, образно говоря, видим невидимое. События могут разворачиваться в одном месте, а мы их можем видеть в другом месте.</p><p>Здесь может возникнуть вопрос: чем эта система лучше обычной системы теленаблюдения? Ведь проще установить телекамеру – или две для стереоизображения, – и с тем же успехом мы могли бы все видеть, и суперкомпьютер тут не нужен, чтобы тут же получить видеокартинку. Однако есть несколько моментов, принципиально отличающих возможности систем телеприсутствия от систем обычного теленаблюдения.</p><p>Во-первых, если сравнить объемы информации, нужные для актуализации этой системы, то это не растры в случае телекамер, а информация о координатах – их может быть очень много, но все равно это разница в несколько порядков.</p><p>Второе. Для систем теленаблюдения есть принципиальные ограничения на ракурсы, как бы мы не располагали телекамер – штанги и так далее, – в принципе, есть ограничения. У систем телеприсутствия этих ограничений, в принципе, нет. Можно просто полетать по виртуальному миру и увидеть вещи, которые мы не увидим с телекамер.А. Т. Например, увидеть наружную поверхность орбитальной станции.В. А. Есть еще один момент. В системах теленаблюдения используется оптический диапазон. Должна быть возможность видеть либо в оптическом диапазоне, либо в субоптическом-инфракрасном, либо в ультрафиолетовом излучении. Здесь этого ограничения тоже нет, потому что регистрация местоположения и ориентация могут осуществляться...А. Г. В радиодиапазоне...В. А. Да, в радиодиапазоне. И здесь как раз становится ясным, для чего это, так сказать, можно использовать. Очень яркий пример – это если у нас есть какое-то сложное здание с коридорами, лестницами. И там возник пожар, в этом здании. Самые первые фазы пожара, когда обычно температура не очень высокая, но есть очень сильная задымленность. Вы не сможете выйти оттуда, если вы не знакомы с интерьером и к тому же дым – это отсутствие видимости уже на расстоянии вытянутой руки. А вот представьте, что это здание было оборудовано заранее системой слежения за объектами. И спасатель, одевая на голову шлем виртуальной реальности, увидит интерьер, эти лестницы и так далее.А. Т. Но шаблон уже введен. Это важно.В. А. Это важно. Есть априрорная информация, которая в точности соответствует геометрической модели интерьера. И это важно. Но для того, что актуализироваться там, смотреть не надо, наблюдать не надо. Система позволит спасателю, хотя бы одному, во-первых, идти по коридорам вслепую, потому что у него на шлеме в дисплейной системе будет изображение, которое будет в точности соответствовать...А. Г. Он может передвигаться абсолютной темноте, задымленности.В. А. И он может заранее, если эта датчиковая система позволяет регистрировать уровень разогрева в зависимости от возгорания, он может заранее вычислить относительно безопасный маршрут, вывести людей и так далее.А. Т. Я хотел бы все-таки, чтобы было рассказано про систему, которая в Центре управления полетами для определенных целей используется...В. А. Да, можно заметить, что основное здесь это как раз наличие инфраструктуры для регистрации этой информации. И естественно, пока мы не имеем этой возможности, разве что в области смарт-хаус. Однако есть области деятельности, где вот эта инфраструктура уже заложена заранее. И если даже нет всех нужных элементов, то уж по крайней мере это не нужно начинать с нуля. </p><p>И вот здесь как раз пример по Центру управления полетами. Здесь в течение десятилетий складывалась и развивалась системы сбора и обработки телеметрической информации. Она как раз носит не видеохарактер, а в основном это числа, огромные массивы числовой информации по состоянию всех систем, аппаратов на орбите. Это могут быть солнечные батареи, например которые как-то раскрылись или не раскрылись. Это могут быть антенны и так далее. </p><p>Здесь как раз мы провели несколько экспериментов по визуализации состояния элементов орбитальной станции на самых первых этапах ее развертывания, когда на орбиту был уже выведен блок ФГБ и предстояло состыковать этот блок с блоком Юнити. Это стыковочно-переходной модуль для объединения станции в единое целое. </p><p>Особенностью этих операций было то, что сближение на самых заключающих этапах стыковки и стягивания происходило с использования манипуляторной системы, установленной на Шаттле. По телеметрическим каналам информация шла в центр. И мы заранее смоделировали геометрическую поверхность блока ФГБ, Юнити и манипуляторов с очень высокой точностью. Этому предшествовала работа по оцифровке этих всех объектов; она заняла около года.</p><p>И, кстати говоря, манипуляторы это одно из наиболее оснащенных устройств для визуализации такого рода. Потому что там идет информация об ориентации, углах разворота звеньев и так далее. И параллельно с обычной системой наблюдения с бортовых телекамер, расположенных на Шаттле, была визуализация их без видеоданных, по телеметрическим данным. И очень точно все это удалось смоделировать, на удивление.</p><p>Был очень большой интерес со стороны руководства, специалистов и американцев. То есть они не ожидали, что у нас такая система. Сейчас эти работы развиваются. И здесь уже можно и пофантазировать. Я считаю, что самым интересным, наиболее интересным видом наблюдения, было бы слежение за выходом в открытый космос. Вот если эти маркерные системы можно было расположить на скафандрах и использовать систему слежения, развернуть ее на станции, то можно было бы понаблюдать за перемещениями в любых ракурсах и даже желающий мог бы себя сопоставить с одним из космонавтов...А. Т. Имея шаблон.В. А. Естественно. Здесь непременным условиям было наличие исчерпывающей априорной информации о поверхности. А это большая работа по оцифровке и геометрическому моделированию.А. Г. У меня встает вопрос тогда, связанный, может быть, с не таким уж далеким будущим развития этих технологий.</p><p>Чем отличается пилотируемый полет на Луну или на Марс от непилотируемого? Тем, что есть пилот. Но если мы отправляем машину, которая собирает избыточную информацию, мы цифруем эту информацию, приводим ее в маркерное соответствие с реальным ландшафтом, скажем, Марса. То есть создаем не виртуальный мир, а виртуально-реальный Марс. Можно будет и не летать.А. Т. Да, это будет виртуальное присутствие. То есть мы можем эту машину так вести, как будто бы мы рядом с ней находимся, аккуратненько ее сажаем или перемещаем вдоль кратеров и так далее.В. А. Я вас разочарую. Дело в том, что ведь на самом деле луноход, который был запущен в 60-е годы, он и работал приблизительно так. На Земле в ЦУПе был оператор, который им управлял. Но это работа была сопряжена с очень высокой нервной нагрузкой. И был не один оператор, а несколько. Значит, они были...А. Т. Были недостаточно мощные средства виртуальной реальности!В. А. Нет. Здесь дело не в этом.А. Т. По-моему так.В. А. Дело в том, что, увы, время распространения радиосигнала между Луной и Землей – это несколько секунд, а для Марса в оппозиции это, если мне не изменяет память, где-то минут 40 в обе стороны. </p><p>Поэтому без пилотируемой космонавтики в этих условиях не обойтись. Потому что здесь реакция должны быть мгновенной. Вот для визуализации и участия людей, которые не подготовлены к этим полетам, а они несправедливо обделены, в общем, эти системы можно использовать.А. Г. То есть опять же как тренажер.В. А. Я бы не хотел, чтобы все сводилось к тренажерным системам. Здесь все-таки речь идет о реальных событиях, так сказать, пусть они запаздывают как-то, но, тем не менее, это реальные события. </p><p>Кстати говоря, вот на этих снимках видно, обратите внимание на звездочки. Они, в самом деле, как бы настоящие. Дело в том, что сфера со звездным небом смоделирована с абсолютной точностью. И именно для этого момента стыковки, именно этого ракурса и местоположения на орбите здесь это сделано честно. То есть, понимаете, это все-таки реальные события, пусть они ограничены в возможностях. </p><p>И в этой связи, если на эту тему разговор зашел, я немножко пофантазирую вот эти вещи можно было бы уже сейчас делать через Интернет. </p><p>Представим, что выделен отдельный веб-сервер, который позволяет эту информацию распространять, как это обычно делается. А на земле, в квартире, так сказать, юзер, или пользователь, располагая материальным обеспечением из ЦУПа и системой виртуальной реальности, мог бы все это наблюдать не в виде колонок цифр или еще чего-то подобного, а он это видел бы сам, конечно, с некоторым запаздыванием. Но, тем не менее, это уже возможно. </p><p>А с развитием веб-технологий сейчас мир переходит на высокоскоростной Интернет. Это второй Интернет так называемый, и там, где уже гигабитные каналы, эти вещи можно осуществить уже гораздо легче, эффектнее, эффективнее. То есть здесь мы уже уходим в сферу общечеловеческих ценностей.А. Т. Первая система, была сделана при поддержке Российского фонда фундаментальных исследований, группами исследователей, которые занимались в свое время баллистическими расчетами, а сейчас, отработав баллистику, стали заниматься этими вещами, которые показали большую перспективность. И приходящие люди из высоких космических инстанций говорили, что все это очень интересно и нам бы это все в полном масштабе и так далее. Мы отвечали очень просто: "Так, дайте средства на технику, именно на эту технику, даже не на людей, а технику, и тогда это будет сделано".В. А. Это недешево, да.А. Г. Могу себе представить. Так вот, говоря все-таки о будущем и о развитии интерфейса между оператором и компьютером, тут просто такая самая глухая фантастика лезет в голову. </p><p>Ведь органы чувств наши не только вынесены за скобки черепной коробки, они и внутри находятся. Мы можем непосредственно влиять на некие центры в головной коре и вызывать ощущения страха, удовольствия, голода, жары. Мы вдруг можем почувствовать какой-то запах. И это будет уже двойная виртуальная реальность, потому что нет необходимости даже воспроизводить это, достаточно написать некую программу, которая манипулировала бы мозгом, с тем, чтобы вызывать все необходимые ощущения...В. А. Видите ли, это можно, эти мысли, что называется, носятся в воздухе, да. Но есть одно "но": а вот как воздействовать? Такой орган, как зрение, еще на уровне сенсоров имеет очень много загадок и неясностей. А если мы уйдем глубже и ближе к центральной нервной системе, так там ведь уже на микроуровне мы должны знать, какие нервы раздражать. Здесь, мне кажется, пока нет просто нужных знаний.А. Г. Это да, но пока возможны гибридные системы.В. А. Да, тут я бы упомянул некоторые системы в этом направлении. Это, скажем, ретинальные дисплеи, если это интересно?А. Г. Да.В. А. Дело в том, что обычный любой дисплей жидкокристаллический, электроннолучевой и так далее, у него есть та особенность, что видеоинформация выводится на промежуточный носитель, это экран. И здесь, конечно, есть ограничения по времени вывода. На самом деле этот промежуточный носитель можно устранить, и, скажем, рисовать изображение на сетчатке глаза лазером. И действительно, есть такие системы, но, правда, как-то я очень подробных описаний не читал, были лишь упоминания об этих ретинальных дисплеях.</p><p>Но и то, сами понимаете, лазерный луч – это штука, в общем-то, небезопасная. А здесь речь идет о воздействии на сетчатку. Тут есть очень много узких моментов. Я думаю, что и с остальными органами чувств и нервной системы очень еще много неясностей.А. Г. Здесь неизбежно встает морально-этический вопрос.А. Т. Морально-этические вопросы сейчас возникают и при использовании обычных систем виртуальной реальности. </p><p>Вот те же очень хорошо развитые компьютерные игры, где есть много моментов, связанных с насилием. Подобное притягивает подобное есть такое выражение. И если много подвергаешься воздействию чего-то подобного, то и сам... В общем, это опасное дело. Здесь должен быть баланс.В. А. Конечно, нужна очень большая осторожность...А. Т. Развитие реакции, развитие быстроты мышления в процессе игры – конечно, это важно, но баланс должен быть.В. А. Это, в общем-то, вопрос этики научных исследований.А. Г. Основная-то угроза не в этом... Зачем же жить в столь несовершенном, мало от тебя зависящем мире, когда есть возможность ухода в мир абсолютно идеальный, созданный для тебя, где ты не просто червь, а еще и бог.В. А. Ну, во-первых, все-таки это сделать пока сложно...А. Т. Тогда ты не сможешь улучшать мир и так там и останешься, в этом виртуальном мире.В. А. Это пока еще сложно сделать на полную катушку и, может быть, слава богу. Но, тем не менее, здесь можно вспомнить слова одного из героев "Девяти дней одного года", который сказал о той же бомбе: "Мысль остановить нельзя, но главное здесь вовремя остановиться. </p><p>И вот эта грань, через которую нельзя переступать, она, конечно же, есть. Но это уже несколько другие сферы, хотя это важно.А. Г. С другой стороны, я очень отчетливо вижу применение виртуальной реальности, соответствующим образом созданной, для лечения психических заболеваний...В. А. Существуют устройства, которые используются для лечения боязни высоты...
Страницы: